K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2021

\(\left|1-2x\right|< 5-x\)

\(\Leftrightarrow-\left(5-x\right)< 1-2x< 5-x\)

\(\Leftrightarrow x-5< 1-2x< 5-x\)

\(\Leftrightarrow-4< x< 2\)

31 tháng 3 2021

Ta có : | 1 − 2 x | < 5 − x

=> − ( 5 − x ) < 1 − 2 x < 5 − x

=>  x − 5 < 1 − 2 x < 5 − x

=> − 4 < x < 2

11 tháng 11 2016

Đặt \(m=a^2,n=b^2\)

Ta đưa bài toán về dạng tìm GTLN và GTNN của \(A=m-3mn+2n\)

Khi đó ta suy ra từ giả thiết :

\(\left(m+n+1\right)^2+3mn+1=4m+5n\)

\(\Rightarrow m-3mn+2n=\left(m+n+1\right)^2+1-3m-3n\)

\(=\left(m^2+n^2+2mn+2m+2n+1\right)+1-3n-3m\)

\(=m^2+n^2+2mn-m-n+2\)

\(=m^2+m\left(2n-1\right)+n^2-n+2\)

\(=m^2+m\left(2n-1\right)+\frac{\left(2n-1\right)^2}{4}+\frac{7}{4}\)

\(=\left(m+\frac{2n-1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Hay \(A\ge\frac{7}{4}\) . Đẳng thức xảy ra khi \(m=\frac{1-2n}{2}\)

Tới đây bạn tự suy ra nhé ^^

 

30 tháng 10 2023

loading...  loading...  loading...  

a: \(AB=\sqrt{\left(1-5\right)^2+\left(1-1\right)^2}=4\)

\(BC=\sqrt{\left(1-1\right)^2+\left(4-1\right)^2}=3\)

b: ABCD là hình bình hành

=>vecto AB=vecto DC

=>1-x=1-5=-4 và 4-y=1-1=0

=>x=5; y=4

 

17 tháng 6 2017

đăng từng câu 1 thôi, tui giải hết cho :v

20 tháng 6 2017

5) \(\sqrt{x+1}+\sqrt{2x+3}=x^2-x-1\) (ĐKXĐ: \(x\ge-1\))

<=>\(\left(\sqrt{x+1}-2\right)+\left(\sqrt{2x+3}-3\right)-\left(x^2-x-6\right)=0\)

<=>\(\dfrac{x-3}{\sqrt{x+1}+2}+\dfrac{2\left(x-3\right)}{\sqrt{2x+3}+3}-\left(x-3\right)\left(x+2\right)=0\)

<=>\(\left(x-3\right)\left(\dfrac{1}{\sqrt{x+1}+2}+\dfrac{2}{\sqrt{2x+3}+3}-x-2\right)=0\)

<=>\(\left[{}\begin{matrix}x-3=0\left(1\right)\\\dfrac{1}{\sqrt{x+1}+2}+\dfrac{2}{\sqrt{2x+3}+3}-x-2=0\left(2\right)\end{matrix}\right.\)

Giải (1) được x=3 thỏa mãn ĐKXĐ.

Giải (2): Từ \(x\ge-1\) ta có:

\(\sqrt{x+1}+2\ge2\), \(\sqrt{2x+3}+3\ge\sqrt{1}+3=4\), \(-x\le1\), từ đó:

VT(2)\(\le\dfrac{1}{2}+\dfrac{2}{4}+1-2=0\).

Như vậy để (2) xảy ra thì x=\(-1\), thỏa mãn ĐKXĐ.

Vậy \(S=\left\{-1;3\right\}\).

Câu 1:
TXĐ:D=R

\(f\left(-x\right)=2\cdot\left(-x\right)^4-3\cdot\left(-x\right)^2+1\)

\(=2x^4-3x^2+1=f\left(x\right)\)

=>f(x) là hàm số chẵn

 

NV
23 tháng 4 2021

12 sai, C mới là đáp án đúng 

13 sai, A đúng, \(sin-sin=2cos...sin...\)

18.

\(\Leftrightarrow\left\{{}\begin{matrix}a=m>0\\\Delta'=m^2-m\left(-m+3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m^2-3m< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\0< m< \dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow m=1\)

Đáp án B

22.

Để pt có 2 nghiệm pb \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-m^2+4m-3>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\1< m< 3\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(2m-3\right)}{m-2}\\x_1x_2=\dfrac{5m-6}{m-2}\end{matrix}\right.\)

\(\dfrac{-2\left(2m-3\right)}{m-2}+\dfrac{5m-6}{m-2}\le0\)

\(\Leftrightarrow\dfrac{m}{m-2}\le0\) \(\Leftrightarrow0\le m< 2\)

Kết hợp điều kiện delta \(\Rightarrow1< m< 2\)

NV
23 tháng 4 2021

24.

Đề bài câu này dính lỗi, ko có điểm M nào cả, chắc là đường thẳng đi qua A

Đường tròn (C) tâm I(1;-2) bán kính R=4

\(\overrightarrow{IA}=\left(1;3\right)\)

Gọi d là đường thẳng qua A và cắt (C) tại 2 điểm B và C. Gọi H là trung điểm BC

\(\Rightarrow IH\perp BC\Rightarrow IH=d\left(I;d\right)\)

Theo định lý đường xiên - đường vuông góc ta luôn có: \(IH\le IA\)

Áp dụng Pitago cho tam giác vuông IBH: 

\(BH=\sqrt{IB^2-IH^2}\Leftrightarrow\dfrac{BC}{2}=\sqrt{16-IH^2}\)

\(\Rightarrow BC_{min}\) khi \(IH_{max}\Leftrightarrow IH=IA\)

\(\Leftrightarrow IA\perp d\Rightarrow d\) nhận \(\overrightarrow{IA}\) là 1 vtpt

Phương trình d: 

\(1\left(x-2\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-5=0\)

13 tháng 12 2020

11 c)

\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) (luôn đúng)

13 tháng 12 2020

12 a)  Có a+b+c=1\(\Rightarrow\) (1-a)(1-b)(1-c)= (b+c)(a+c)(a+b) (*)

áp dụng BĐT cô-si: \(\left(b+c\right)\left(a+c\right)\left(a+b\right)\ge2\sqrt{bc}2\sqrt{ac}2\sqrt{ab}=8\sqrt{\left(abc\right)2}=8abc\) ( luôn đúng với mọi a,b,c ko âm ) 

b)  áp dụng BĐT cô-si: \(c\left(a+b\right)\le\dfrac{\left(a+b+c\right)^2}{4}=\dfrac{1}{4}\)

Tương tự: \(a\left(b+c\right)\le\dfrac{1}{4};b\left(c+a\right)\le\dfrac{1}{4}\)

\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{4}\dfrac{1}{4}\dfrac{1}{4}=\dfrac{1}{64}\)