Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|1-2x\right|< 5-x\)
\(\Leftrightarrow-\left(5-x\right)< 1-2x< 5-x\)
\(\Leftrightarrow x-5< 1-2x< 5-x\)
\(\Leftrightarrow-4< x< 2\)
Đặt \(m=a^2,n=b^2\)
Ta đưa bài toán về dạng tìm GTLN và GTNN của \(A=m-3mn+2n\)
Khi đó ta suy ra từ giả thiết :
\(\left(m+n+1\right)^2+3mn+1=4m+5n\)
\(\Rightarrow m-3mn+2n=\left(m+n+1\right)^2+1-3m-3n\)
\(=\left(m^2+n^2+2mn+2m+2n+1\right)+1-3n-3m\)
\(=m^2+n^2+2mn-m-n+2\)
\(=m^2+m\left(2n-1\right)+n^2-n+2\)
\(=m^2+m\left(2n-1\right)+\frac{\left(2n-1\right)^2}{4}+\frac{7}{4}\)
\(=\left(m+\frac{2n-1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Hay \(A\ge\frac{7}{4}\) . Đẳng thức xảy ra khi \(m=\frac{1-2n}{2}\)
Tới đây bạn tự suy ra nhé ^^
a: \(AB=\sqrt{\left(1-5\right)^2+\left(1-1\right)^2}=4\)
\(BC=\sqrt{\left(1-1\right)^2+\left(4-1\right)^2}=3\)
b: ABCD là hình bình hành
=>vecto AB=vecto DC
=>1-x=1-5=-4 và 4-y=1-1=0
=>x=5; y=4
5) \(\sqrt{x+1}+\sqrt{2x+3}=x^2-x-1\) (ĐKXĐ: \(x\ge-1\))
<=>\(\left(\sqrt{x+1}-2\right)+\left(\sqrt{2x+3}-3\right)-\left(x^2-x-6\right)=0\)
<=>\(\dfrac{x-3}{\sqrt{x+1}+2}+\dfrac{2\left(x-3\right)}{\sqrt{2x+3}+3}-\left(x-3\right)\left(x+2\right)=0\)
<=>\(\left(x-3\right)\left(\dfrac{1}{\sqrt{x+1}+2}+\dfrac{2}{\sqrt{2x+3}+3}-x-2\right)=0\)
<=>\(\left[{}\begin{matrix}x-3=0\left(1\right)\\\dfrac{1}{\sqrt{x+1}+2}+\dfrac{2}{\sqrt{2x+3}+3}-x-2=0\left(2\right)\end{matrix}\right.\)
Giải (1) được x=3 thỏa mãn ĐKXĐ.
Giải (2): Từ \(x\ge-1\) ta có:
\(\sqrt{x+1}+2\ge2\), \(\sqrt{2x+3}+3\ge\sqrt{1}+3=4\), \(-x\le1\), từ đó:
VT(2)\(\le\dfrac{1}{2}+\dfrac{2}{4}+1-2=0\).
Như vậy để (2) xảy ra thì x=\(-1\), thỏa mãn ĐKXĐ.
Vậy \(S=\left\{-1;3\right\}\).
Câu 1:
TXĐ:D=R
\(f\left(-x\right)=2\cdot\left(-x\right)^4-3\cdot\left(-x\right)^2+1\)
\(=2x^4-3x^2+1=f\left(x\right)\)
=>f(x) là hàm số chẵn
12 sai, C mới là đáp án đúng
13 sai, A đúng, \(sin-sin=2cos...sin...\)
18.
\(\Leftrightarrow\left\{{}\begin{matrix}a=m>0\\\Delta'=m^2-m\left(-m+3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m^2-3m< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\0< m< \dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow m=1\)
Đáp án B
22.
Để pt có 2 nghiệm pb \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-m^2+4m-3>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\1< m< 3\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(2m-3\right)}{m-2}\\x_1x_2=\dfrac{5m-6}{m-2}\end{matrix}\right.\)
\(\dfrac{-2\left(2m-3\right)}{m-2}+\dfrac{5m-6}{m-2}\le0\)
\(\Leftrightarrow\dfrac{m}{m-2}\le0\) \(\Leftrightarrow0\le m< 2\)
Kết hợp điều kiện delta \(\Rightarrow1< m< 2\)
24.
Đề bài câu này dính lỗi, ko có điểm M nào cả, chắc là đường thẳng đi qua A
Đường tròn (C) tâm I(1;-2) bán kính R=4
\(\overrightarrow{IA}=\left(1;3\right)\)
Gọi d là đường thẳng qua A và cắt (C) tại 2 điểm B và C. Gọi H là trung điểm BC
\(\Rightarrow IH\perp BC\Rightarrow IH=d\left(I;d\right)\)
Theo định lý đường xiên - đường vuông góc ta luôn có: \(IH\le IA\)
Áp dụng Pitago cho tam giác vuông IBH:
\(BH=\sqrt{IB^2-IH^2}\Leftrightarrow\dfrac{BC}{2}=\sqrt{16-IH^2}\)
\(\Rightarrow BC_{min}\) khi \(IH_{max}\Leftrightarrow IH=IA\)
\(\Leftrightarrow IA\perp d\Rightarrow d\) nhận \(\overrightarrow{IA}\) là 1 vtpt
Phương trình d:
\(1\left(x-2\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-5=0\)
11 c)
\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) (luôn đúng)
12 a) Có a+b+c=1\(\Rightarrow\) (1-a)(1-b)(1-c)= (b+c)(a+c)(a+b) (*)
áp dụng BĐT cô-si: \(\left(b+c\right)\left(a+c\right)\left(a+b\right)\ge2\sqrt{bc}2\sqrt{ac}2\sqrt{ab}=8\sqrt{\left(abc\right)2}=8abc\) ( luôn đúng với mọi a,b,c ko âm )
b) áp dụng BĐT cô-si: \(c\left(a+b\right)\le\dfrac{\left(a+b+c\right)^2}{4}=\dfrac{1}{4}\)
Tương tự: \(a\left(b+c\right)\le\dfrac{1}{4};b\left(c+a\right)\le\dfrac{1}{4}\)
\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{4}\dfrac{1}{4}\dfrac{1}{4}=\dfrac{1}{64}\)
Em đăng thiếu đề rồi