Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(a^3+2b^2-4b+3=0\)
\(\Leftrightarrow a^3=-2\left(b-1\right)^2-1\le-1\Rightarrow a^3\le-1\Rightarrow a^2\ge1\)
\(\Rightarrow\hept{\begin{cases}a^2\ge1\\a^2b^2\ge b^2\end{cases}}\)\(\Rightarrow a^2+a^2b^2-2b\ge1+b^2-2b\Rightarrow\left(b-1\right)^2\le0\)
mà \(\left(b-1\right)^2\)luôn \(\ge0\forall b\in Q\)
dấu ''='' xảy ra <=> \(b-1=0\Rightarrow b=1\)
sau đó em chỉ cần thay b=1 vào pt ban đầu :
rồi => a = ... sau đó lấy a2+b2=...
Bài 1 : x² + x² -12 = 0
a = 1 , b = 1 , c = -12
∆ = 1 -4 × 1 × (-12)
∆ = 49 > 0 .✓49 =7
Vậy pt có 2 ng⁰ pb ( tự viết nhé ) !
Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2} (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
[2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2} thì xy đạt giá trị nhỏ nhất.
Ta có : (a-b)^2 >=0
=> a^2 + b^2 - 2ab >= 0 (*)
Ta có: 2a(√b - 1/2)^2 >= 0 do a là số thực dương.
=> 2a(b - √b + 1/4) >= 0
=> 2ab - 2a√b +a/2 >= 0 (**)
Ta có: 2b(√a - 1/2)^2 >= 0 do b là số thực dương.
=> 2b(a - √a + 1/4) >=0
=> 2ab - ab√a + b/2 >= 0 (***)
Cộng (*), (**) và (***) vế theo vế, ta có:
a^2 + b^2 - 2ab + 2ab -2a√b + a/2 +2ab - 2b√a + b/2 >=0
a^2 + b^2 +2ab + (a +b)/2 - (2a√b + 2b√a) >= 0
=> (a + b)^2 + (a + b)/2 >= 2a√b + 2b√a (đpcm)
- Phương trình: \(x^2+\left(m-1\right)x-6=0.\)ở dạng tổng quát: \(ax^2+bx+c=0\)có hệ số \(a=1;b=\left(m-1\right);c=-6\)
- \(x_1\)và \(x_2\)là nghiệm của phương trình trên thì thỏa mãn: (*) \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=1-m\\x_1\cdot x_2=\frac{c}{a}=-6\end{cases}}\)\(\Rightarrow x_1;x_2\)trái dấu
- Ta có \(A=\left(x_1^2-9\right)\cdot\left(x_2^2-4\right)=\left(x_1x_2\right)^2-4x_1^2-9x_2^2+36=\)
- \(=\left(-6\right)^2-\left(4x_1^2+2\cdot2x_1\cdot3x_2+9x_2^2\right)+12x_1x_2+36=72+12\cdot\left(-6\right)-\left(2x_1+3x_2\right)^2\)
- \(=-\left(2x_1+3x_2\right)^2\le0\)
- Vậy, GTLN của A = 0 khi \(2x_1+3x_2=0\Leftrightarrow\frac{x_1}{3}=-\frac{x_2}{2}=P\)thay vào \(x_1\cdot x_2=-6\)ta được \(P^2=1\)
- Nếu \(P=1\)thì \(x_1=3;x_2=-2;\)thay vào \(x_1+x_2=1-m\Leftrightarrow3-2=1-m\Leftrightarrow m=0\)
- Nếu \(P=-1\)thì \(x_1=-3;x_2=2\)thay vào \(x_1+x_2=1-m\Leftrightarrow-3+2=1-m\Leftrightarrow m=2\)
- Vậy có 2 giá trị của m là \(m=0\)và \(m=2\)để A đạt GTLN.
\(\Leftrightarrow\int^{x+y=20}_{\left(x+y\right)^2-4xy=208}\Leftrightarrow\int^{x+y=20}_{xy=96}\)
Dùng Viet đảo suy ra x,y
Ta có : x+ y = 20
<=> y = 20 - x
Thế vào x2 + y2 = 208
Ta được : x2 + ( 20 - x )2 =208
<=> x2 + 400 - 40x + x2 = 208
<=> 2x2 - 40x + 192 = 0
<=> x=12 hoặc x= 8
Với x= 12
=> y = 20 - 12 = 8
Với x= 8
=> y = 20 - 8 = 12
OK
\(\hept{\begin{cases}a^3+b^3=9\left(1\right)\\a^2+2b^2=a+4b\left(2\right)\end{cases}}\)
Lấy \(\left(1\right)-3\left(2\right)\)
Ta có \(\left(a^3-3a^2+3a-1\right)+\left(b^3-6b^2+12b-8\right)=0\)
<=> \(\left(a-1\right)^3=-\left(b-2\right)^3\)
<=> \(a+b=3\)
Thay vào (1) ta được
\(\left(3-a\right)^3+a^3=9\)
=> \(\orbr{\begin{cases}a=2\Rightarrow b=1\\a=1\Rightarrow a=2\end{cases}}\)
Vậy \(\left(a,b\right)=\left(2,1\right);\left(1,2\right)\)