Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Đối với mỗi khối đa diện ta kí hiệu Đ là số đỉnh, C là số cạnh, M là số mặt và đa diện đều đó thuộc loại n ; p (khối đa diện lồi có các mặt là n – giác đều và mỗi đỉnh là đỉnh chung của p cạnh) thì p Đ = 2 C = n M .
Gọi khối đa diện thuộc loại n ; p (khối đa diện lồi có các mặt là n – giác đều và mỗi đỉnh là đỉnh chung của p cạnh)
Theo đề bài ta có: p=3.
Khi đó áp dụng công thức p Đ = 2 C = n M . Trong đó Đ, C, M lần lượt là số đỉnh, số cạnh và số mặt của khối đa diện.
3 Đ = 2 C ⇒ Đ = 2 C 3 .
Do đó Đ là số chẵn.
Đáp án D
Xét tứ diện đều ABCD với đỉnh A là đỉnh chung của đúng 3 cạnh ⇒ m = 4
Chọn D
Gọi tổng số các đỉnh của (H) là đ và tổng số các cạnh của (H) là c. Ta có 5đ = 2c. Do đó c > 10, đ > 4 và đ chia hết cho 2, c chia hết cho 5
Phương pháp:
Khối đa diện có các đỉnh là trung điểm của các cạnh xuất phát từ đỉnh A và F của hình bát diện đều ABCDEF (như hình vẽ) là hình hộp chữ nhật.
Cách giải:
Khối đa diện có các đỉnh là trung điểm của các cạnh xuất phát từ đỉnh A và F của hình bát diện đều ABCDEF là hình hộp chữ nhật có đáy là hình vuông cạnh a 2 ;
Đáp án là D
Số tam giác được tạo thành từ 10 đỉnh của đa giác lồi (H) là: C 10 3 .
Xét trường hợp số tam giác chỉ chứa hai cạnh của đa giác, là số tam giác có 3 đỉnh liên tiếp của đa giác. Có 10 tam giác như vậy.
Xét trường hợp số tam giác chứa đúng một cạnh của đa giác, là số tam giác có 2 đỉnh là 2 đỉnh liên tiếp của đa giác và đỉnh còn lại không kề với hai đỉnh kia. Khi đó, xét một cạnh bất kỳ ta có C 10 - 4 1 cách chọn đỉnh còn lại của tam giác (trừ hai đỉnh đã chọn và hai đỉnh kề nó). Trường hợp này có 10 . C 6 1 tam giác.
Vậy số tam giác không chứa cạnh của đa giác (H) là: C 10 3 - 10 - 10 . C 6 1 = 50 tam giác
Đáp án là D
Theo tích chất hình đa diện thì mỗi đỉnh của hình da diện là đỉnh chung của ít nhất ba mặt