\(S_{ABC}>...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

có thể khẳng định 

28 tháng 12 2017

tại sao lại thế

22 tháng 4 2017

Giải bài 47 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 47 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 7 2017

Vì  △ A'B'C' đồng dạng △ ABC nên Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Mà AB = 16,2 cm; BC = 24,3 cm; AC = 32,7 cm nên:

A'B'= AB + 10,8cm = 16,2 + 10,8 = 27 (cm)

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

29 tháng 9 2018

Giải bài 47 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8

Xét ΔABC có: AB2 + AC2 = 32 + 42 = 25 = 52 = BC2

⇒ ΔABC vuông tại A (Định lý Pytago đảo)

⇒ Diện tích tam giác ABC bằng:

Giải bài 47 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8

(với k là tỉ số đồng dạng).

Lại có tỉ số diện tích bằng bình phương tỉ số đồng dạng

Giải bài 47 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇒ A’B’ = 3.AB = 3.3 = 9 (cm)

B’C’ = 3.BC = 3.5 = 15 (cm)

C’A’ = 3.CA = 3.4 = 12 (cm)

Vậy độ dài ba cạnh của tam giác lần lượt là 9cm, 12cm, 15cm.

19 tháng 4 2018

Có độ dài của các cạnh tam giác ABC rồi mà đáng lẽ phải tính các cạnh của tam giác A'B'C' chứ ????

Tự vẽ hình nha :"))))

Ta có tam giác ABC đồng dạng với tam giác A'B'C' 

\(\Rightarrow\frac{S_{ABC}}{S_{A'B'C'}}=\left(\frac{AB}{A'B'}\right)^2\)

Mà tam giác ABC có độ dài các cạnh là 3,4,5 nên là tam giác vuông

\(\Rightarrow S_{ABC}=\frac{1}{2}.3.4=6\left(cm^2\right)\)

\(\Rightarrow\frac{6}{54}=\left(\frac{AB}{A'B'}\right)^2\Rightarrow\left(\frac{AB}{A'B'}\right)^2=\frac{1}{9}\Rightarrow\frac{AB}{A'B'}=\frac{1}{3}\)

\(\Rightarrow A'B'=3.AB=3.3\)

Nên mỗi cạnh của tam giác A'B'C' gấp 3 lần của cạnh của tam giác ABC.

Suy ra ba cạnh của tam giác A'B'C là 9cm, 12cm, 15cm
 


 



 

17 tháng 4 2020

A A' B B' C C'

Xét ΔABC có: AB2 + AC2 = 32 + 42 = 25 = 52 = BC2

⇒ ΔABC vuông tại A (Định lý Pytago đảo)

⇒ Diện tích tam giác ABC bằng

\(S=\frac{1}{2}.AB.AC=6\left(cm^2\right)\)

\(\Delta ABC~\Delta A'B'C'\left(gt\right)\)

\(\Rightarrow\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}=k\)

( với k là tỉ số đồng dạng ).

Lại có tỉ số diện tích bằng bình phương tỉ số đồng dạng

\(\Rightarrow k^2=\frac{S_{A'B'C'}}{S_{ABC}}=\frac{54}{6}=9\Rightarrow k=3\)

\(\Rightarrow A'B'=3.AB=3.3=9\left(cm\right)\)

\(B'C'=3.BC=3.5=15\left(cm\right)\)

\(C'A'=3.CA=3.4=12\left(cm\right)\)

Vậy độ dài ba cạnh của tam giác lần lượt là 9cm, 12cm, 15cm.