Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{HAB}=90^0-60^0=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK
Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)
=>DK//AB
A B C D E
Ta có: ^ACD=^ACB - ^BCD (1). Do tam giác ABC vuông cân => ^ABC=^ACB=450
Thay ^ACB=450 và ^BCD=150 vào (1): ^ACD=450-150=300.
Xét tam giác DAC: ^DAC=900 => ^ADC+^ACD=900 => ^ADC=900-^ACD=900-300=600 => ^ADC=600.
Tam giác ABC vuông cân tại A => AB=AC.
Xét tam giác EAB và tam giác DAC có:
AE=AD
^EAB=^DAC=900 => Tam giác EAB=Tam giác DAC (c.g.c)
AB=AC
=> ^AEB=^ADC (2 góc tương ứng). Mà ^ADC=600 => ^AEB=600.
Xét tam giác EAD: AD=AE, ^EAD=900 => Tam giác EAD vuông cân tại A => ^ADE=^AED=450.
Lại có: ^AED+^BED=^AEB => ^BED=^AEB-^AED=600-450=150.
Vậy ^BED=150.
A B C M 30
Ta có : \(\widehat{B}=\widehat{MAB}=30^0\) (gt )
=> \(\Delta ABM\) cân tại M
=> \(\widehat{M}=180^0-30^0+30^0=120^0\)
Ta có : \(\widehat{BAM}+\widehat{MAC}=90^0\)
hay \(30^0+\widehat{MAC}=90^0\)
=> \(\widehat{MAC}=90^0-30^0=60^0\)
em mới học lớp 5 nên để 2 năm sau nữa nhá anh =)
ờm đến 2 năm sau anh thấy m không giải được thì m chớt với anh