Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) 2 + 22 + 23 + ...+ 220 chia hết cho 2 nhưng không chia hết cho 4 nên không phải số chính phương.
b) 1015 + 8 = (...0) + 8 = ...8 có tận cùng là 8 nên không phải số chính phương.
Cho A= 5+5^2+5^3+...+5^100
a,Số A là số nguyên tố hay hợp số?
b,Số A có phải là số chính phương không?

a; A = 5 + 5\(^2\) + 5\(^3\) + ... + 5\(^{100}\)
A = 5.(1 + 5+ 5\(^2\) + ... + 5\(^{99}\))
A ⋮ 1; 5; A Vậy A là hợp số.
b; A = 5 + 5\(^2\) + 5\(^3\) + ... + 5\(^{100}\)
A = 5 + (5\(^2\) + 5\(^3\) + ... + 5\(^{100}\))
A = 5 + 5\(^2\).(1 + 5 + 5\(^2\) +...+ 5\(^{98}\))
A ⋮ 5; A không chia hết cho 5\(^2\)
Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì sẽ chia hết cho bình phương của số nguyên tố đó.
a. Số A là số nguyên tố hay hợp số?
Đáp án: A là hợp số
b. Số A có phải là số chính phương không?
Đáp án: A không phải là số chính phương

a) 32 + 42 = 9 + 16 = 25 = 5.5 = 52 <=> tổng này là số chính phương
b) 52 + 42 = 25 + 16 = 41 <=> tổng này không phải là số chính phương
c) 3.5.7.9.11 + 3 => 10395 + 3 = 10398 <=> tổng này không phải là số chính phương
d) 2.3.4.5.6 - 3 => 720 - 3 = 717 <=> hiệu này không phải là số chính phương

\(1^3+2^3=1+8=9=3^2\)
Vậy là số chính phương
\(1^3+2^3+3^3=1+8+27=36=6^2\)
Vậy là số chính phương
\(1^3+2^3+3^3+4^3=1+8+27+64=100=10^2\)
Vậy là số chính phương
a)
Ta có
\(1^3+2^3=1+8=9=3^2=\left(-3\right)^2\)
=> SCP
b)
Ta có
\(1^3+2^3+3^3=1+8+27=36=6^2=\left(-6\right)^2\)
=> SCP
c)
Ta có
\(1^3+2^3+3^3+4^3=1+8+27+64=100=10^2=\left(-10\right)^2\)
=> SCP
a) 10 2 + 69 = 169 = 13 2 là số chính phương.
b) 3 5 - 18 = 225 = 15 2 là số chính phương.
c) 25.16 = 20 2 là số chính phương.
d) 15 2 + 5 3 + 50 = 20 2 là số chính phương