Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-13}{8}+\dfrac{-5}{9}+\dfrac{26}{26}-\dfrac{13}{9}\)
= \(\left(\dfrac{-13}{8}+\dfrac{26}{16}\right)+\left(\dfrac{-5}{9}-\dfrac{13}{9}\right)\)
= \(\left(\dfrac{-26}{16}+\dfrac{26}{26}\right)+\left(\dfrac{-18}{9}\right)\)
= \(0+\left(-2\right)\)
= \(-2\)
\(\left(\dfrac{-13}{8}-\dfrac{26}{16}\right)+\left(\dfrac{-5}{9}-\dfrac{13}{9}\right)=\left(\dfrac{-13}{8}-\dfrac{13}{8}\right)+\dfrac{-18}{9}=0+\left(-2\right)=-2\)
\(\left(3x-4\right)^3=5^2+4.5^2\)
\(\Leftrightarrow\left(3x-4\right)^3=5^2\left(1+4\right)\)
\(\Leftrightarrow\left(3x-4\right)^3=5^3\)
\(\Leftrightarrow3x-4=5\Leftrightarrow3x=9\Leftrightarrow x=3\)
Ta có: \(\left(3x-4\right)^3=5^2+4\cdot5^2\)
\(\Leftrightarrow3x-4=5\)
hay x=3
Lời giải:
$A=7+(7^2+7^3+7^4+7^5)+(7^6+7^6+7^8+7^9)+....+(7^{2018}+7^{2019}+7^{2020}+7^{2021})$
$=7+7^2(1+7+7^2+7^3)+7^6(1+7+7^2+7^3)+....+7^{2018}(1+7+7^2+7^3)$
$=7+(1+7+7^2+7^3)(7^2+7^6+....+7^{2018}$
$=7+400(7^2+7^6+....+7^{2018})$
Dễ thấy $400(7^2+7^6+....+7^{2018})$ tận cùng là $0$
Do đó $A$ tận cùng là $7$
\(3\left(x+2\right)^3-1^{2019}=5\cdot4^2\)
\(\Leftrightarrow3\left(x+2\right)^3=5\cdot16+1=81\)
\(\Leftrightarrow x+2=3\)
hay x=1
\(4^{15}.9^{15}< 2^n.3^n< 18^{16}.2^{16}\)
⇒\(\left(4.9\right)^{15}< \left(2.3\right)^n< \left(18.2\right)^{16}\)
⇒\(\left(6^2\right)^{15}< 6^n< \left(6^2\right)^{16}\)
⇒\(6^{30}< 6^n< 6^{32}\)
⇒\(6^n=6^{31}\)
⇒n=31
\(4^{15}\cdot9^{15}< 2^n\cdot3^n< 18^{16}\cdot2^{16}\\ \Leftrightarrow\left(4\cdot9\right)^{15}< \left(2\cdot3\right)^n< \left(18\cdot2\right)^{16}\\ \Leftrightarrow36^{15}< 6^n< 36^{16}\\ \Leftrightarrow6^{30}< 6^n< 6^{32}\\ \Leftrightarrow n=31\)
Lời giải:
$b=2021^0=1< 26^9=a$
$c=26^9=(2.13)^9=2^9.13^9=(2^3)^3.13^9=8^3.13^9<13^3.13^9$
$=13^{12}< 13^{15}=a$
Vậy $b< c< a$
Đáp án C.
\(a,\\ =\dfrac{10.11+10.5+11.5+10.7+11.7}{11.12+11.5+12.5+11.7+12.7}\\ =\dfrac{10.11\left(1+5.5+7.7\right)}{11.12\left(1+5.5+7.7\right)}=\dfrac{10}{12}=\dfrac{5}{6}\)
\(b,\\ =\dfrac{\left(1.2.3.....25\right).\left(25.26.27....49\right)}{26.27.28.....50}\\ =\dfrac{1.2.3....25}{50}=1.2.3....12\)
cẻm ơn