Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết ta chứng minh BĐT
\(\frac{2k-1}{2k}< \frac{\sqrt{3k-2}}{\sqrt{3k+1}}\left(1\right)\)
Thật vậy, (1) \(\Leftrightarrow\left(2k-1\right)\sqrt{3k+1}< 2k\sqrt{3k-2}\)\(\Leftrightarrow\left(4k^2-4k+1\right)\left(3k+1\right)< 4k^2\left(3k-2\right)\)
\(\Leftrightarrow12k^3-8k^2-k+1< 12k^3-8k^2\)\(\Leftrightarrow k-1>0\left(\forall k\ge2\right)\)
Trong (1), lần lượt thay k bằng 1,2,...,n ta được:
\(\frac{1}{2}\le\frac{\sqrt{1}}{\sqrt{4}},\frac{3}{4}\le\frac{\sqrt{4}}{\sqrt{7}},....,\frac{2n-1}{2n}< \frac{\sqrt{3n-2}}{\sqrt{3n+1}}\)
Nhân từng vế các BĐT trên ta có:
\(\frac{1}{2}.\frac{3}{4}....\frac{2n-1}{2n}< \frac{\sqrt{1}}{\sqrt{4}}.\frac{\sqrt{4}}{\sqrt{7}}...\frac{\sqrt{3n-2}}{\sqrt{3n+1}}=\frac{1}{\sqrt{3n+1}}\)
áp dụng bđt svacxơ, ta có
\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)
dấu = xảy ra <=>\(\frac{x^2}{a}=\frac{y^2}{b}\)
nên \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=2.\frac{x^{2n}}{a^n}\)
,mặt khác, ta có \(\frac{2}{\left(a+b\right)^n}=2.\frac{1}{\left(a+b\right)^n}=2.\frac{\left(x^2+y^2\right)^n}{\left(a+b\right)^n}=2.\frac{\left(2.x^2\right)^n}{\left(2.a\right)^n}=2.\frac{2^2.x^{2n}}{2^2.a^n}=2.\frac{x^{2n}}{a^n}\)
từ 2 điều trên => \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=\frac{2}{\left(a+b\right)^n}\)
\(P=\frac{2n^2-n+2}{2n+1}=\frac{n\left(2n+1\right)-\left(2n-2\right)}{2n+1}=n-\frac{2n-2}{2n+1}\)
\(=n-\frac{2n+1-3}{2n+1}=n-1+\frac{3}{2n+1}\)
Để P nguyên thì \(\frac{3}{2n+1}\)nguyên
\(\Leftrightarrow3⋮\left(2n+1\right)\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lập bảng:
\(2n+1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(0\) | \(-1\) | \(1\) | \(-2\) |
Vậy \(n\in\left\{-2;-1;0;1\right\}\)
#)Giải :
\(P=\frac{2n^2-n+2}{2n+1}=\frac{2n^2+n-2n-1+3}{2n+1}=\frac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}\)
\(=\frac{\left(2n+1\right)\left(n-1\right)+3}{2n+1}=n-1+\frac{3}{2n+1}\)
\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow\orbr{\begin{cases}2n+1=-3\\2n+1=1\end{cases}\Rightarrow\orbr{\begin{cases}n=-2\\n=-1\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}2n+1=1\\2n+1=3\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}}\)
Vậy \(n\in\left\{-2;-1;0;1\right\}\)
từ trang 1 dến 9 có 9 chữ số
từ trang 10 đến 99 có số chữ số là
( 99 - 10 ) : 1 + 1 = 90 số
để viết 90 số có 2 chữ số cần số chữ số là
90 . 2= 180 chữ số
từ 100 đến 999 có số số là
( 999 - 100 ) : 1 + 1 = 900 số
để viết 900 số có 3 chữ số cần số chữ số là
900 . 3 = 2700 chữ số
từ 1000 đến 1032 có số số là
( 1032 - 1000 ) : 1 + 1 = 33 số
để viết 33 số có 4 chữ số ta cần số chữ số là
33 . 4 = 132 chữ số
cần tất cả số chữ số để viết từ 1 đến 1032 là
9 + 180 + 2700 + 132 = 3021 chữ số
Giả sử n^2+m=a^2
Vì m là ước dương của 2n^2 nên 2n^2=mk ( k∈N )
Suy ra n^2+m=n^2+(2n^2)/k=a^2
⇔n^2.k^2+2n^2.k=a^2.k^2
Suy ra :
k^2+2k=(ak/n)^2à số chính phương.
Suy ra Vô lý vì k^2<k^2+2k<(k+1)^2
^ là mũ;/là phân số; . là nhân
chúc bạn học tốt
Không mất tính tổng quát , giả sử m < n < p < q
Nếu m \(\ge\)3 thì : \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}+\frac{1}{q}+\frac{1}{mnpq}\le\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{3.5.7}< 1\)
Suy ra m = 2
Khi đó : \(\frac{1}{n}+\frac{1}{p}+\frac{1}{q}+\frac{1}{2npq}=\frac{1}{2}\) ( 1 )
Nếu n \(\ge\)5 thì \(\frac{1}{n}+\frac{1}{p}+\frac{1}{q}+\frac{1}{2npq}\le\frac{1}{5}+\frac{1}{7}+\frac{1}{11}+\frac{1}{2.5.7.11}< \frac{1}{2}\)
Vậy n = 3 và ( 1 ) trở thành : \(\frac{1}{p}+\frac{1}{q}+\frac{1}{6pq}=\frac{1}{6}\)
\(\Leftrightarrow\left(p-6\right)\left(q-6\right)=37\Rightarrow p=7;q=43\)
Vậy (m,n,p,q) = .( 2,3,7,43 ) và các hoán vị của nó