Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔABC cân tại C có CI là đường trung tuyến ứng với cạnh đáy AB
nên CI là đường cao ứng với cạnh AB
Xét ΔABC cân tại B có BK là đường trung tuyến ứng với cạnh đáy AC
nên BK là đường cao ứng với cạnh AC
2: Xét ΔOBI và ΔOCK có
OB=OC
\(\widehat{IBO}=\widehat{KCO}\left(=60^0\right)\)
IB=KC
Do đó: ΔOBI=ΔOCK
Suy ra: OI=OK
2:
a: Xét tứ giác DIHK có
\(\widehat{DIH}=\widehat{DKH}=\widehat{IDK}=90^0\)
Do đó: DIHK là hình chữ nhật
Suy ra: DH=KI(1)
Xét ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF
nên \(DH^2=HE\cdot HF\left(2\right)\)
Từ (1) và (2) suy ra \(IK^2=HE\cdot HF\)
a, Theo tc 2 tt cắt nhau: \(AE=EC;BF=CF\)
Vậy \(AE+BF=EC+CF=EF\)
b, Vì \(\left\{{}\begin{matrix}AE=EC\\\widehat{EAO}=\widehat{ECO}=90^0\\OE.chung\end{matrix}\right.\) nên \(\Delta AOE=\Delta COE\)
\(\Rightarrow\widehat{AOE}=\widehat{EOC}\) hay OE là p/g \(\widehat{AOC}\)
Cmtt: \(\Delta BOF=\Delta COF\Rightarrow\widehat{BOF}=\widehat{COF}\) hay OF là p/g \(\widehat{BOC}\)
Vậy \(\widehat{EOF}=\widehat{COF}+\widehat{COE}=\dfrac{1}{2}\left(\widehat{AOC}+\widehat{BOC}\right)=90^0\) hay OE⊥OF
TC2:
a: Thay x=-3 và y=2 vào (d), ta được:
\(-3\left(m-1\right)+3m+2=2\)
\(\Leftrightarrow3+2=2\)(vô lý)