K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔABC cân tại C có CI là đường trung tuyến ứng với cạnh đáy AB

nên CI là đường cao ứng với cạnh AB

Xét ΔABC cân tại B có BK là đường trung tuyến ứng với cạnh đáy AC

nên BK là đường cao ứng với cạnh AC

2: Xét ΔOBI và ΔOCK có 

OB=OC

\(\widehat{IBO}=\widehat{KCO}\left(=60^0\right)\)

IB=KC

Do đó: ΔOBI=ΔOCK

Suy ra: OI=OK

2:

a: Xét tứ giác DIHK có 

\(\widehat{DIH}=\widehat{DKH}=\widehat{IDK}=90^0\)

Do đó: DIHK là hình chữ nhật

Suy ra: DH=KI(1)

Xét ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF

nên \(DH^2=HE\cdot HF\left(2\right)\)

Từ (1) và (2) suy ra \(IK^2=HE\cdot HF\)

20 tháng 4 2022

DKXD : \(x\ge-1;y\ne-1\)

Dat : \(\left\{{}\begin{matrix}\sqrt{x+1}=a\left(a\ge0\right)\\y+1=b\left(b\ne0\right)\end{matrix}\right.\)

hpt<=>\(\left\{{}\begin{matrix}a+2-\dfrac{2}{y+1}=2\\2a-\dfrac{1}{y+1}=\dfrac{3}{2}\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}a+2-\dfrac{2}{b}=2\\2a-\dfrac{1}{b}=\dfrac{3}{2}\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}a-\dfrac{2}{b}=0\\4a-\dfrac{2}{b}=3\end{matrix}\right.< =>\left\{{}\begin{matrix}3a=3\\a=\dfrac{2}{b}\end{matrix}\right.< =>\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)(tmdk)

\(=>\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)(tmdk)

 

a: Áp dụng định lí Pytago vào ΔADC vuông tại D, ta được:

\(AC^2=AD^2+DC^2\)

\(\Leftrightarrow AC^2=8^2+15^2=289\)

hay AC=17cm

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại D có DM là đường cao ứng với cạnh huyền AC, ta được:

\(DM\cdot AC=AD\cdot DC\)

\(\Leftrightarrow DM=\dfrac{120}{17}\left(cm\right)\)

10 tháng 9 2021

a ) Theo định lý py-ta-go trong ΔADC, ta có :
AC^2 = AD^2 + CD^2
         = 8^2 + 15^2
         = 64 + 225
         = 289
=> AC = 17 (cm)
b ) Ta có : 
Xét tam giác ΔMDA và ΔDCA, có :
góc A chung
góc AMD = góc ADC = 90 độ
=> ΔMDA ∼ ΔDCA (G.G)
=> MD/CD = AD/AC
=> MD = CD.AD/AC
           = 15.8/17
           = 7,1 (cm)

13 tháng 4 2022

Giusp mình với mọi người ơi!!!

 

Bài I:

1: Thay x=4 vào A, ta được:

\(A=\dfrac{4}{2+1}=\dfrac{4}{3}\)

2: \(B=\dfrac{3}{\sqrt{x}+1}+\dfrac{x+5}{x-1}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{3}{\sqrt{x}+1}+\dfrac{\left(x+5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{3\left(\sqrt{x}-1\right)+x+5-\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3\sqrt{x}-3+x-\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

3: P=A*B

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\cdot\dfrac{x}{\sqrt{x}+1}=\dfrac{x}{\sqrt{x}-1}\)

P<=4

=>P-4<=0

=>\(\dfrac{x-4\sqrt{x}+4}{\sqrt{x}-1}< =0\)

=>\(\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}< =0\)

=>\(\sqrt{x}-1< 0\)

=>\(\sqrt{x}< 1\)

=>0<=x<1

Kết hợp ĐKXĐ, ta được: 0<=x<1