Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Rightarrow\left|\dfrac{3}{4}+x\right|=0\Rightarrow\dfrac{3}{4}+x=0\Rightarrow x=-\dfrac{3}{4}\)
b) \(\Rightarrow x+0,4=\dfrac{4}{9}:\dfrac{2}{3}=\dfrac{2}{3}\Rightarrow x=\dfrac{2}{3}-0,4=\dfrac{4}{15}\)
\(=\dfrac{101}{2}\left(4+\dfrac{5}{3}-2-\dfrac{5}{3}\right)=\dfrac{101}{2}\cdot2=101\)
a, Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=10^2+8^2\)
=> \(BC^2=164\)
=> \(BC=12,8\left(cm\right)\)
b, Xét Δ ABE và Δ HBE, có :
\(\widehat{ABE}=\widehat{HBE}\) (BE là tia phân giác \(\widehat{ABC}\))
\(\widehat{BAE}=\widehat{BHE}=90^o\)
BE là cạnh chung
=> Δ ABE = Δ HBE (g.c.g)
=> AB = HB
Xét Δ ABH, có : AB = HB (cmt)
=> Δ ABH cân tại B
c,
Gọi O là giao điểm của tia AH và BE
Xét Δ cân ABH, có :
BO là tia phân giác \(\widehat{ABH}\)
=> BO là đường cao
=> \(BO\perp AH\)
=> \(BE\perp AH\)
\(=\left(\dfrac{7}{4}.\dfrac{2}{7}\right).\dfrac{4}{5}=\dfrac{1}{2}.\dfrac{4}{5}=\dfrac{2}{5}\)
a/\(\left(1,75:\dfrac{7}{2}\right).\dfrac{4}{5}=\left(\dfrac{7}{4}:\dfrac{7}{2}\right).\dfrac{4}{5}=\dfrac{1}{2}.\dfrac{4}{5}\dfrac{2}{5}\)
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k$
$\Rightarrow a=bk, c=dk$. Khi đó:
$\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b(k-1)}{b}=k-1(1)$
$\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d(k-1)}{d}=k-1(2)$
Từ $(1); (2)\Rightarrow \frac{a-b}{b}=\frac{c-d}{d}$
-------------------
$\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b(2k+3)}{b(2k-3)}=\frac{2k+3}{2k-3}(3)$
$\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d(2k+3)}{d(2k-3)}=\frac{2k+3}{2k-3}(4)$
Từ $(3); (4)\Rightarrow \frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}$
a: XétΔCHA vuông tại H và ΔCHD vuông tại H có
CH chung
HA=HD
=>ΔCHA=ΔCHD
=>CA=CD
b: DM vuông góc AC
AB vuông góc AC
=>DM//AB
=>góc HDK=góc HAB
Xét ΔHAB vuông tại H và ΔHDK vuông tại H có
HA=HD
góc HAB=góc HDK
=>ΔHAB=ΔHDK
=>HB=HK
=>H là trung điểm của BK
d: Xét ΔCAD có
AF.CH,MD là đường cao
=>AF,CH,MD đồng quy
=>A,K,F thẳng hàng
1: \(75^3:\left(-25\right)^3=\left(\dfrac{75}{-25}\right)^3=\left(-3\right)^3=-27\)
2: \(\left(-60\right)^2:\left(-5\right)^2=\dfrac{60^2}{5^2}=12^2=144\)
3: \(169^2:\left(-13\right)^2=\dfrac{169^2}{13^2}=\left(\dfrac{169}{13}\right)^2=13^2=169\)
4: \(\left(\dfrac{1}{2}\right)^2:\left(\dfrac{3}{2}\right)^2=\left(\dfrac{1}{2}:\dfrac{3}{2}\right)^2=\left(\dfrac{1}{3}\right)^2=\dfrac{1}{9}\)
5: \(\left(\dfrac{2}{3}\right)^3:\left(\dfrac{8}{27}\right)^3=\left(\dfrac{2}{3}:\dfrac{8}{27}\right)^3=\left(\dfrac{2}{3}\cdot\dfrac{27}{8}\right)^3=\left(\dfrac{9}{4}\right)^3=\dfrac{729}{64}\)
6: \(\left(\dfrac{5}{4}\right)^4:\left(\dfrac{15}{2}\right)^4=\left(\dfrac{5}{4}:\dfrac{15}{2}\right)^4=\left(\dfrac{5}{4}\cdot\dfrac{2}{15}\right)^4=\left(\dfrac{1}{6}\right)^4=\dfrac{1}{1296}\)
7: \(\left(\dfrac{7}{8}\right)^5:\left(\dfrac{21}{16}\right)^5\)
\(=\left(\dfrac{7}{8}:\dfrac{21}{16}\right)^5\)
\(=\left(\dfrac{7}{8}\cdot\dfrac{16}{21}\right)^5=\left(\dfrac{2}{3}\right)^5=\dfrac{32}{243}\)
8: \(\left(\dfrac{5}{6}\right)^4:\left(\dfrac{25}{18}\right)^4=\left(\dfrac{5}{6}:\dfrac{25}{18}\right)^4=\left(\dfrac{5}{6}\cdot\dfrac{18}{25}\right)^4=\left(\dfrac{3}{5}\right)^4=\dfrac{81}{625}\)
9:
\(\left(-\dfrac{3}{4}\right)^3:\left(\dfrac{9}{8}\right)^3=\left(-\dfrac{3}{4}:\dfrac{9}{8}\right)^3=\left(-\dfrac{3}{4}\cdot\dfrac{8}{9}\right)^3\)
\(=\left(-\dfrac{2}{3}\right)^3=-\dfrac{8}{27}\)
10:
\(\left(\dfrac{9}{10}\right)^6:\left(\dfrac{27}{-20}\right)^6=\left(\dfrac{9}{10}:\dfrac{-27}{20}\right)^6\)
\(=\left(\dfrac{9}{10}\cdot\dfrac{20}{-27}\right)^6=\left(-\dfrac{2}{3}\right)^6=\dfrac{64}{729}\)