K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 8 2021

\(x^3=8+3\sqrt[3]{\left(4-2\sqrt[]{2}\right)\left(4+2\sqrt[]{2}\right)}\left(\sqrt[3]{4-2\sqrt[]{2}}+\sqrt[]{4+2\sqrt[]{2}}\right)\)

\(\Rightarrow x^3=8+6x\)

\(\Rightarrow x^3-6x=8\)

Do đó:

\(P=x\left(x^3-6x\right)-8x+24=8x-8x+24=24\)

Câu 1: 

Gọi chiều rộng là x

Chiều dài là x+20

Theo đề, ta có: 2(x+x+20)=104

=>2x+20=52

=>2x=32

hay x=16

Vậy: Diện tích của miếng đất là 16x36=576(m2)

28 tháng 2 2022

Xin lỗi nhưng e cần bài này dạng Giải bài bằng cách lập hệ phương trình ạ

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Bạn nên ghi đầy đủ đề ra nhé. 

1 tháng 5 2023

Từ điểm A nằm ngoài đường tròn (O; R) với OA > 2R. Vẽ tiếp tuyến AB và cát tuyến ACD với (O) (B là tiếp điểm; AC < AD, tia AD không cắt đoạn thẳng OB). Gọi CE, DF là các đường cao của tam giác BCD. 

a)    Chứng minh: tứ giác DEFC nội tiếp và EF//AB.

b)    Tia EF cắt AD tại G, BG cắt (O) tại H. Chứng minh: tam giác FHC đồng dạng tam giác GAB

c)     Gọi I là giao điểm của CE và DF. Tia HI cắt DC tại M. Chứng minh: OM vuông góc với CD

5 tháng 2 2022

Đề bài đâu rồi em?

23 tháng 3 2022

mặc dù h này chắc ko có ai lm đề ktra giữa kì nma sao mình thấy đầu tờ giấy nó lại có chữ đấy á

23 tháng 3 2022

Dạ đề thi thử c 

13 tháng 4 2022

Giusp mình với mọi người ơi!!!

 

AH
Akai Haruma
Giáo viên
14 tháng 10 2023

Bạn muốn làm gì với phương trình này nhỉ? Nếu chỉ có điều kiện $x,y$ không âm và pt như thế này thì không tìm được giá trị $x,y$ cụ thể.

\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)

\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Lời giải:

ĐK: $x>0; x\neq 1$
a.

\(P=\frac{3}{\sqrt{x}}+\left[\frac{x}{\sqrt{x}(\sqrt{x}-1)}+\frac{x+1}{\sqrt{x}}-\frac{1}{\sqrt{x}-1}\right].\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(=\frac{3}{\sqrt{x}}+\left[\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}+\frac{x+1}{\sqrt{x}}\right].\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(=\frac{3}{\sqrt{x}}+\left[\frac{\sqrt{x}-1}{\sqrt{x}-1}+\frac{x+1}{\sqrt{x}}\right].\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(=\frac{3}{\sqrt{x}}+(1+\frac{x+1}{\sqrt{x}}).\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{3}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}.\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{3}{\sqrt{x}}+1\)

b.

$P\geq 10\Leftrightarrow \frac{3}{\sqrt{x}}+1\geq 10$
$\Leftrightarrow \frac{3}{\sqrt{x}}\geq 9$

$\Leftrightarrow \sqrt{x}\leq \frac{1}{3}$

$\Leftrightarrow x\leq \frac{1}{9}$

Kết hợp với ĐKXĐ suy ra $0< x\leq \frac{1}{9}$

c. 

Để $P$ nguyên thì $\frac{3}{\sqrt{x}}$ nguyên.

Với $x$ nguyên, điều này xảy ra khi $\sqrt{x}$ là ước của $3$

$\Leftrightarrow \sqrt{x}\in\left\{1; 3\right\}$

$\Leftrightarrow x\in\left\{1; 9\right\}$ 

Vì $x\neq 1$ nên $x=9$