Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3=8+3\sqrt[3]{\left(4-2\sqrt[]{2}\right)\left(4+2\sqrt[]{2}\right)}\left(\sqrt[3]{4-2\sqrt[]{2}}+\sqrt[]{4+2\sqrt[]{2}}\right)\)
\(\Rightarrow x^3=8+6x\)
\(\Rightarrow x^3-6x=8\)
Do đó:
\(P=x\left(x^3-6x\right)-8x+24=8x-8x+24=24\)
Câu 1:
Gọi chiều rộng là x
Chiều dài là x+20
Theo đề, ta có: 2(x+x+20)=104
=>2x+20=52
=>2x=32
hay x=16
Vậy: Diện tích của miếng đất là 16x36=576(m2)
Xin lỗi nhưng e cần bài này dạng Giải bài bằng cách lập hệ phương trình ạ
Từ điểm A nằm ngoài đường tròn (O; R) với OA > 2R. Vẽ tiếp tuyến AB và cát tuyến ACD với (O) (B là tiếp điểm; AC < AD, tia AD không cắt đoạn thẳng OB). Gọi CE, DF là các đường cao của tam giác BCD.
a) Chứng minh: tứ giác DEFC nội tiếp và EF//AB.
b) Tia EF cắt AD tại G, BG cắt (O) tại H. Chứng minh: tam giác FHC đồng dạng tam giác GAB
c) Gọi I là giao điểm của CE và DF. Tia HI cắt DC tại M. Chứng minh: OM vuông góc với CD
Bạn muốn làm gì với phương trình này nhỉ? Nếu chỉ có điều kiện $x,y$ không âm và pt như thế này thì không tìm được giá trị $x,y$ cụ thể.
\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)
\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)
Lời giải:
ĐK: $x>0; x\neq 1$
a.
\(P=\frac{3}{\sqrt{x}}+\left[\frac{x}{\sqrt{x}(\sqrt{x}-1)}+\frac{x+1}{\sqrt{x}}-\frac{1}{\sqrt{x}-1}\right].\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(=\frac{3}{\sqrt{x}}+\left[\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}+\frac{x+1}{\sqrt{x}}\right].\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(=\frac{3}{\sqrt{x}}+\left[\frac{\sqrt{x}-1}{\sqrt{x}-1}+\frac{x+1}{\sqrt{x}}\right].\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(=\frac{3}{\sqrt{x}}+(1+\frac{x+1}{\sqrt{x}}).\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{3}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}.\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{3}{\sqrt{x}}+1\)
b.
$P\geq 10\Leftrightarrow \frac{3}{\sqrt{x}}+1\geq 10$
$\Leftrightarrow \frac{3}{\sqrt{x}}\geq 9$
$\Leftrightarrow \sqrt{x}\leq \frac{1}{3}$
$\Leftrightarrow x\leq \frac{1}{9}$
Kết hợp với ĐKXĐ suy ra $0< x\leq \frac{1}{9}$
c.
Để $P$ nguyên thì $\frac{3}{\sqrt{x}}$ nguyên.
Với $x$ nguyên, điều này xảy ra khi $\sqrt{x}$ là ước của $3$
$\Leftrightarrow \sqrt{x}\in\left\{1; 3\right\}$
$\Leftrightarrow x\in\left\{1; 9\right\}$
Vì $x\neq 1$ nên $x=9$