K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Lời giải:

a. Với $n$ nguyên khác -3, để $B$ nguyên thì:

$2n+9\vdots n+3$

$\Rightarrow 2(n+3)+3\vdots n+3$

$\Rightarrow 3\vdots n+3$

$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$

b. 

$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$

Để $B_{\max}$ thì $\frac{3}{n+3}$ max

Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất

Tức là $n+3=1$

$\Leftrightarrow n=-2$

c. Để $B$ min thì $\frac{3}{n+3}$ min

Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất 

Tức là $n+3=-1$

$\Leftrightarrow n=-4$

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k$

$\Rightarrow a=bk, c=dk$. Khi đó:

$\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b(k-1)}{b}=k-1(1)$

$\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d(k-1)}{d}=k-1(2)$

Từ $(1); (2)\Rightarrow \frac{a-b}{b}=\frac{c-d}{d}$

-------------------

$\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b(2k+3)}{b(2k-3)}=\frac{2k+3}{2k-3}(3)$

$\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d(2k+3)}{d(2k-3)}=\frac{2k+3}{2k-3}(4)$

Từ $(3); (4)\Rightarrow \frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}$

2 tháng 5 2023

Bài 6

a) (3x² + 5) + [(2x² - 5x) - (5x² + 4)]

= 3x² + 5 + (2x² - 5x - 5x² - 4)

= 3x² + 5 + 2x² - 5x - 5x² - 4

= (3x² + 2x² - 5x²) - 5x + (5 - 4)

= -5x + 1

---------‐----------

b) (x + 2)(x² - 2x + 4)

= x.x² - x.2x + x.4 + 2.x² - 2.2x + 2.4

= x³ - 2x² + 4x + 2x² - 4x + 8

= x³ + (-2x² + 2x²) + (4x - 4x) + 8

= x³ + 8

-------------------

c) (4x³ - 8x² + 13x - 5) : (2x - 1)

= (4x³ - 2x² - 6x² + 3x + 10x - 5) : (2x - 1)

= [(4x³ - 2x²) - (6x² - 3x) + (10x - 5)] : (2x - 1)

= [2x²(2x - 1) - 3x(2x - 1) + 5(2x - 1)] : (2x - 1)

= (2x - 1)(2x² - 3x + 5) : (2x - 1)

= 2x² - 3x + 5

2 tháng 5 2023
AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Lời giải:

a. Với $n$ nguyên khác -3, để $B$ nguyên thì:

$2n+9\vdots n+3$

$\Rightarrow 2(n+3)+3\vdots n+3$

$\Rightarrow 3\vdots n+3$

$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$

b. 

$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$

Để $B_{\max}$ thì $\frac{3}{n+3}$ max

Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất

Tức là $n+3=1$

$\Leftrightarrow n=-2$

c. Để $B$ min thì $\frac{3}{n+3}$ min

Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất 

Tức là $n+3=-1$

$\Leftrightarrow n=-4$

10 tháng 8 2018

 x + {(x - 3) - [(x + 3) - (-x - 2)]} = x

=> x + {x - 3 - [x + 3 + x + 2]} = x

=> x + {x - 3 - x - 3 - x - 2} = x

=> x + x - 3 - x - 3 - x - 2 = x

=> (x - x) + (x - x) - (3 + 3 + 2) = x

=> 0 + 0 - 8 = x

=> - 8 = x

vậy x = - 8

10 tháng 8 2018

=>(x-3)-[(x+3)-(-x-2)]=0

=>(x-3)-(x+3+x+2)=0

=>x-3-2x-5=0

=>-x-8=0

=>-x=8=>x=-8

27 tháng 6 2018

Để M là số nguyên

Thì (x2–5) chia hết cho (x2–2)

==>(x2–2–3) chia hết cho (x2–2)

==>[(x2–2)—3] chia hết cho (x2–2)

Vì (x2–2) chia hết cho (x2–2)

Nên 3 chia hết cho (x2–2)

==> (x2–2)€ Ư(3)

==> (x2–2) €{1;-1;3;-3}

TH1: x2–2=1

x2=1+2

x2=3

==> ko tìm được giá trị của x

TH2: x2–2=-1

x2=-1+2

x2=1

12=1

==>x=1

TH3: x2–2=3

x2=3+2

x2=5

==> không tìm được giá trị của x

TH4: x2–2=-3

x2=-3+2

x2=-1

(-1)2=1

==> x=-1

Vậy x € {1;—1)

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Bài 1: 

a. $\frac{x}{2}=\frac{3,6}{1,2}=3$

$x=3.2=6$

b. 

$\frac{8}{2x+1}=\frac{4}{3}$

$2x+1=\frac{8.3}{4}=6$

$2x=6-1=5$

$x=\frac{5}{2}$

c. $\frac{x}{4}=\frac{9}{x}$

$x^2=9.4=36=6^2=(-6)^2$

$\Rightarrow x=\pm 6$

d.

$\frac{x+1}{2}=\frac{32}{x+1}$

$(x+1)^2=32.2=64=8^2=(-8)^2$

$\Rightarrow x+1=8$ hoặc $x+1=-8$

$\Rightarrow x=7$ hoặc $x=-9$

4 tháng 8 2023

c, (4 + 1\(\dfrac{3}{5}\)) . 2\(\dfrac{1}{7}\) - 4\(\dfrac{2}{3}\)\(\dfrac{5}{9}\) 

= (4 + \(\dfrac{8}{5}\)) . \(\dfrac{15}{7}\) - \(\dfrac{14}{3}\)\(\dfrac{5}{9}\)

\(\dfrac{28}{5}\)\(\dfrac{15}{7}\) - \(\dfrac{42}{5}\)

= 12 - \(\dfrac{42}{5}\)

\(\dfrac{18}{5}\)