Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kẻ Az//Bx//Dy
=> BAD = BAz + DAz = (180o - ABx) + (180o - ADy) = 30o + 60o = 90o


bn gửi lại đi nó bị vướng nên ko thấy j hết

Xét 2 tam giác ABC và MNP có:
AB=MN (gt)
\(\widehat {BAC} = \widehat {NMP}\) (gt)
AC=MP (gt)
Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

Em thấy bạn Vuông nói đúng
Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.
Ví dụ:
\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh

Bài 1:
1: xx'⊥AD
yy'⊥AD
Do đó: xx'//yy'
2:
Cách 1:
xx'//yy'
=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)
=>\(\hat{C_1}=70^0\)
Cách 2:
ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)
=>\(\hat{xBC}=180^0-70^0=110^0\)
Ta có: xx'//yy'
=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)
=>\(\hat{C_1}=180^0-110^0=70^0\)
Bài 2:
a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên mm'//nn'
b: Cách 1:
ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)
=>\(\hat{mAD}=180^0-70^0=110^0\)
Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)
=>\(\hat{D_1}=110^0\)
Cách 2:
Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)
mà \(\hat{xAm}=70^0\)
nên \(\hat{BAD}=70^0\)
Ta có: AB//CD
=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)
=>\(\hat{D_1}=180^0-70^0=110^0\)

\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Bài 1:
a. $\frac{x}{2}=\frac{3,6}{1,2}=3$
$x=3.2=6$
b.
$\frac{8}{2x+1}=\frac{4}{3}$
$2x+1=\frac{8.3}{4}=6$
$2x=6-1=5$
$x=\frac{5}{2}$
c. $\frac{x}{4}=\frac{9}{x}$
$x^2=9.4=36=6^2=(-6)^2$
$\Rightarrow x=\pm 6$
d.
$\frac{x+1}{2}=\frac{32}{x+1}$
$(x+1)^2=32.2=64=8^2=(-8)^2$
$\Rightarrow x+1=8$ hoặc $x+1=-8$
$\Rightarrow x=7$ hoặc $x=-9$