K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Bài 1: 

a. $\frac{x}{2}=\frac{3,6}{1,2}=3$

$x=3.2=6$

b. 

$\frac{8}{2x+1}=\frac{4}{3}$

$2x+1=\frac{8.3}{4}=6$

$2x=6-1=5$

$x=\frac{5}{2}$

c. $\frac{x}{4}=\frac{9}{x}$

$x^2=9.4=36=6^2=(-6)^2$

$\Rightarrow x=\pm 6$

d.

$\frac{x+1}{2}=\frac{32}{x+1}$

$(x+1)^2=32.2=64=8^2=(-8)^2$

$\Rightarrow x+1=8$ hoặc $x+1=-8$

$\Rightarrow x=7$ hoặc $x=-9$

20 tháng 8 2023

Kẻ Az//Bx//Dy

=> BAD = BAz + DAz = (180o - ABx) + (180o - ADy) = 30o + 60o = 90o

26 tháng 8 2021

bạn ghi lại cái đề hộ mình nhé, nó bị mất phần số mũ rồi

bn gửi lại đi nó bị vướng nên ko thấy j hết

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP}\) (gt)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

18 tháng 9 2023

Em thấy bạn Vuông nói đúng

Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.

Ví dụ:

\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh

16 giờ trước (9:47)

Bài 1:

1: xx'⊥AD

yy'⊥AD

Do đó: xx'//yy'

2:

Cách 1:

xx'//yy'

=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)

=>\(\hat{C_1}=70^0\)

Cách 2:

ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)

=>\(\hat{xBC}=180^0-70^0=110^0\)

Ta có: xx'//yy'

=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{C_1}=180^0-110^0=70^0\)

Bài 2:

a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên mm'//nn'

b: Cách 1:

ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)

=>\(\hat{mAD}=180^0-70^0=110^0\)

Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)

=>\(\hat{D_1}=110^0\)

Cách 2:

Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)

\(\hat{xAm}=70^0\)

nên \(\hat{BAD}=70^0\)

Ta có: AB//CD

=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{D_1}=180^0-70^0=110^0\)

25 tháng 1 2024

\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)

Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:

\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)

\(\dfrac{9y^2}{25}-y^2=-4\)

\(-\dfrac{16}{25}y^2=-4\)

\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)

\(y^2=\dfrac{25}{4}\)

\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)

*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)

*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)

Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:

\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)

9 tháng 1

ai biết gì đâu