Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
c: Ta có: \(\dfrac{6x^3-x^2-23x+a}{2x+3}\)
\(=\dfrac{6x^3+9x^2-10x^2-15x-8x-12+a+12}{2x+3}\)
\(=3x^2-5x-4+\dfrac{a+12}{2x+3}\)
Để phép chia trên là phép chia hết thì a+12=0
hay a=-12
Sửa đề: \(\left(4-\dfrac{u}{2}\right)\left(\dfrac{u^2}{4}+2u+16\right)=4^3-\left(\dfrac{u}{2}\right)^3=64-\dfrac{u^3}{8}\)
a) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)
b) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)
c) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4\left(x-2y\right)\left(x-2y\right)=4\left(x-2y\right)^2\)
d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(-2x^2+3x+7\right)\)
Câu 5:
\(VT=\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}\\ =\dfrac{xz}{1+z+xz}+\dfrac{1}{z+1+xz}+\dfrac{z}{zx+z+1}\\ =\dfrac{zx+z+1}{zx+z+1}=1\)
Bài 1:
\(a,\dfrac{25}{14x^2y}=\dfrac{75y^4}{42x^2y^5};\dfrac{14}{21xy^5}=\dfrac{28x}{42x^2y^5}\\ b,\dfrac{3x+1}{12xy^4}=\dfrac{3x\left(3x+1\right)}{36x^2y^4};\dfrac{y-2}{9x^2y^3}=\dfrac{4y\left(y-2\right)}{36x^2y^4}\\ c,\dfrac{1}{6x^3y^2}=\dfrac{6y^2}{36x^3y^4};\dfrac{x+1}{9x^2y^4}=\dfrac{4x\left(x+1\right)}{36x^3y^4};\dfrac{x-1}{4xy^3}=\dfrac{9x^2y\left(x-1\right)}{36x^3y^4}\\ d,\dfrac{3+2x}{10x^4y}=\dfrac{12y^4\left(3+2x\right)}{120x^4y^5};\dfrac{5}{8x^2y^2}=\dfrac{75x^2y^3}{120x^4y^5};\dfrac{2}{3xy^5}=\dfrac{80x^3}{120x^4y^5}\)
13.
$(x+4)^2+(x+5)(x-5)-2x(x+1)$
$=(x^2+8x+16)+(x^2-25)-(2x^2+2x)$
$=x^2+8x+16+x^2-25-2x^2-2x$
$=(x^2+x^2-2x^2)+(8x-2x)+(16-25)=6x-9$
14.
$(x-1)^2-2(x+3)(x-3)+4x(x-4)$
$=(x^2-2x+1)-2(x^2-9)+(4x^2-16x)$
$=x^2-2x+1-2x^2+18+4x^2-16x$
$=(x^2-2x^2+4x^2)+(-2x-16x)+(1+18)=3x^2-18x+19$
15.
$(y-3)(y+3)(y^2+9)-(y^2+2)(y^2-2)$
$=(y^2-9)(y^2+9)-(y^4-4)$
$=(y^4-81)-(y^4-4)=-81+4=-77$
\(a,A=0,2\left(5x-1\right)-\dfrac{1}{2}\left(\dfrac{2}{3}x+4\right)+\dfrac{2}{3}\left(3-x\right)\)
\(=x-0,2-\dfrac{1}{3}x-2+2-\dfrac{2}{3}x\)
\(=\left(-0,2-2+2\right)+\left(x-\dfrac{1}{3}x-\dfrac{2}{3}x\right)\)
\(=-0,2\)
\(b,B=\left(x-2y\right)\left(x^2+2xy+4y^2\right)-\left(x^3-8y^3+10\right)\)
\(=x^3-8y^3-x^3+8y^3-10\)
\(=-10\)
\(c,C=4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)-4x\)
\(=4\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)-4x\)
\(=4x^2+8x+4+4x^2-4x+1-8x^2+8-4x\)
\(=13\)
a) \(A=0,2\left(5x-1\right)-\dfrac{1}{2}\left(\dfrac{2}{3}x+4\right)+\dfrac{2}{3}\left(3-x\right)\)
\(A=x-\dfrac{1}{5}-\dfrac{1}{3}x-2+2-\dfrac{2}{3}x\)
\(A=\left(x-\dfrac{1}{3}x-\dfrac{2}{3}x\right)-\left(\dfrac{1}{5}+2-2\right)\)
\(A=-\dfrac{1}{5}\)
Vậy: ...
b) \(B=\left(x-2y\right)\left(x^2+2xy+4y^2\right)-\left(x^3-8y^3+10\right)\)
\(B=\left[x^3-\left(2y\right)^3\right]-\left[x^3-\left(2y\right)^3\right]-10\)
\(B=-10\)
Vậy: ...
c) \(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x+1\right)\left(x-1\right)-4x\)
\(=4\left(x^2+2x+4\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)-4x\)
\(=4x^2+8x+4+4x^2-4x+1-8x^2+8-4x\)
\(=\left(4x^2+4x^2-8x^2\right)+\left(8x-4x-4x\right)+\left(4+1+8\right)\)
\(=13\)
Vậy:...
Bài 6:
a: Xét ΔAPC có
M là trung điểm của AC
Q là trung điểm của PC
Do đó: MQ là đường trung bình của ΔAPC
Suy ra: MQ//AP
Xét ΔBMQ có
P là trung điểm của BQ
PD//MQ
Do đó: D là trung điểm của BM
Suy ra: DB=DM