Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hàm bậc 3 có 2 cực trị nằm về 2 phía trục hoành
\(\Leftrightarrow y=0\) có 3 nghiệm pb
\(\Leftrightarrow x^3-\left(2m+1\right)x^2+\left(m+1\right)x+m-1=0\) có 3 nghiệm pb
\(\Leftrightarrow\left(x-1\right)\left(x^2-2mx-m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-2mx-m+1=0\left(1\right)\end{matrix}\right.\)
Bài toán thỏa mãn khi (1) có 2 nghiệm pb khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=1-2m-m+1\ne0\\\Delta'=m^2+m-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{2}{3}\\\left[{}\begin{matrix}m< \dfrac{-1-\sqrt{5}}{2}\\m>\dfrac{-1+\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)
Có 19 số tự nhiên nhỏ hơn 20 thỏa mãn
\(\left(1+i\right)^{20}=\left(\left(1+i\right)^2\right)^{10}=\left(2i\right)^{10}=\left(\left(2i\right)^2\right)^5=\left(4.i^2\right)^5=\left(-4\right)^5=-2^{10}\)
Cả 4 đáp án đều sai (bạn có thể kiểm tra kết quả dễ dàng bằng chế độ MODE-2 trong casio)
\(h'\left(x\right)=f'\left(x\right)-g'\left(x\right)=0\Rightarrow x=\left\{a;b;c\right\}\)
Ta thấy \(h'\left(x\right)>0\) trên \(\left(b;c\right)\) và \(h'\left(x\right)< 0\) trên \(\left(a;b\right)\)
\(\Rightarrow x=b\) là điểm cực tiểu trên \(\left[a;c\right]\) hay \(\min\limits_{\left[a;c\right]}h\left(x\right)=h\left(b\right)\)
Gọi V là thể tích khi quay phần giới hạn bởi \(y=\dfrac{1}{x}\) ; x=1, y=0; Ox quanh Ox
\(\Rightarrow V=V_1+V_2\)
\(V=\pi\int\limits^5_1\dfrac{1}{x^2}dx=\dfrac{4\pi}{5}\)
\(V_1=\pi\int\limits^k_1\dfrac{1}{x^2}dx=-\dfrac{\pi}{x}|^k_1=\pi-\dfrac{\pi}{k}\)
\(\Rightarrow V_2=V-V_1=\dfrac{4\pi}{5}-\pi+\dfrac{\pi}{k}=\dfrac{\pi}{k}-\dfrac{\pi}{5}\)
\(\Rightarrow\pi-\dfrac{\pi}{k}=2\left(\dfrac{\pi}{k}-\dfrac{\pi}{5}\right)\)
\(\Rightarrow k=\dfrac{15}{7}\)
a.
C là trung điểm của AD nên tọa độ D thỏa mãn:
\(\left\{{}\begin{matrix}x_D=2x_C-x_A=-3\\y_D=2y_C-y_A=3\\z_D=2z_C-z_A=4\end{matrix}\right.\) \(\Rightarrow D\left(-3;3;4\right)\)
b.
Gọi \(E\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(3;0;-3\right)\\\overrightarrow{EC}=\left(-2-x;2-y;3-z\right)\end{matrix}\right.\)
ABCE là hbh \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{EC}\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2-x=3\\2-y=0\\3-z=-3\end{matrix}\right.\) \(\Leftrightarrow E\left(-5;2;6\right)\)
c.
Gọi \(F\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{FA}=\left(-1-x;1-y;2-z\right)\\\overrightarrow{FB}=\left(2-x;1-y;-1-z\right)\\\overrightarrow{FC}=\left(-2-x;2-y;3-z\right)\end{matrix}\right.\)
\(2\overrightarrow{FA}+3\overrightarrow{FB}=\overrightarrow{FC}\Leftrightarrow\left\{{}\begin{matrix}2\left(-1-x\right)+3\left(2-x\right)=-2-x\\2\left(1-y\right)+3\left(1-y\right)=2-y\\2\left(2-z\right)+3\left(-1-z\right)=3-z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{3}{4}\\z=-\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow F\left(\dfrac{3}{2};\dfrac{3}{4};-\dfrac{1}{2}\right)\)
d.
Gọi G có tọa độ dạng: \(G\left(x;y;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AG}=\left(x+1;y-1;-2\right)\\\overrightarrow{BG}=\left(x-2;y-1;1\right)\end{matrix}\right.\)
Ba điểm A;B;G thẳng hàng khi:
\(\dfrac{x-2}{x+1}=\dfrac{y-1}{y-1}=\dfrac{1}{-2}\)
\(\Rightarrow\) Không tồn tại G thỏa mãn yêu cầu đề bài