K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2022

Câu e,d à bạn

 

24 tháng 11 2021

câu hỏi đâu

24 tháng 11 2021

https://www.youtube.com/channel/UCUbQt-KjcTI7_W41LqBBwtg

23 tháng 12 2021

g: \(=\dfrac{x^2+2x-x^2-4x-2x+4}{x\left(x-2\right)\left(x+2\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\)

h: \(=\dfrac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)

23 tháng 12 2021

\(e,=\dfrac{1}{x-1}-\dfrac{2x}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{x^2-2x+1}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{x-1}{x^2+1}\\ f,=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\\ =\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)

\(g,=\dfrac{x}{x\left(x-2\right)}-\dfrac{x^2+4x}{x\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x\left(x+2\right)}\\ =\dfrac{x^2+2x-x^2-4x-2x+4}{x\left(x-2\right)\left(x+2\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\\ h,=\dfrac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)

21 tháng 10 2021

Xét tứ giác ABEC có 

O là trung điểm của BC

O là trung điểm của AE

Do đó: ABEC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABEC là hình chữ nhật

17 tháng 7 2023

\(\dfrac{3}{4}\left(x^2y\right)^2:\dfrac{1}{8}xy^2\\ =\dfrac{3}{4}x^4y^2:\dfrac{1}{8}xy^2\\ =\left(\dfrac{3}{4}:\dfrac{1}{8}\right)\left(x^4:x\right)\left(y^2:y^2\right)\\ =6x^3\)

17 tháng 7 2023

\(\dfrac{3}{4}\left(x^2y\right)^2\div\dfrac{1}{8}xy^2\)

\(=\dfrac{3}{4}x^4y^2\div\dfrac{1}{8}xy^2\)

\(=6x^3\)

26 tháng 4 2022

hông có câu 4,5 có câu 4 với câu 5 à

28 tháng 4 2022

:))))) Dạ vậy cậu chỉ giúp mình câu 4 với câu 5 đk ạ

Câu 2: 

\(\Leftrightarrow\left(x+2\right)\left(10x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{3}{10}\end{matrix}\right.\)

Câu 19: 

\(=\dfrac{11x+x-18}{2x-3}=\dfrac{12x-18}{2x-3}=6\)

Câu 20: 

\(=\dfrac{3x+5}{x\left(x-5\right)}+\dfrac{x-25}{5\left(x-5\right)}\)

\(=\dfrac{15x+25+x^2-25x}{5x\left(x-5\right)}=\dfrac{\left(x-5\right)^2}{5x\left(x-5\right)}=\dfrac{x-5}{5x}\)

11 tháng 7 2023

\(3.\)

\(a,\)

\(\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\Leftrightarrow4x^2-12x+9-x^2-10x-25=0\)

\(\Leftrightarrow3x^2-22x-16=0\)

\(\Leftrightarrow3.\left(x-8\right)\left(x+\dfrac{2}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3=0\left(\text{vô lí}\right)\\x-8=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(S=\left\{8;-\dfrac{2}{3}\right\}\)

\(b,\)

\(\left(x^3-x^2\right)-4x^2+8x-4=0\)

\(\Leftrightarrow x^3-5x^2+8x-4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy \(S=\left\{1;2\right\}\)

\(4.\)

\(a,\)

\(16x^3y+\dfrac{1}{4}yz^3\)

\(=\dfrac{1}{4}y\left(64x^3+z^3\right)\)

\(=\dfrac{1}{4}y\left(4x+z\right)\left(16x^2-4xz+z^2\right)\)

\(b,\)

\(x^{m+4}-x^{m+3}-x-1\)

\(=x^m.x^4-x^m.x^3-x-1\)

\(=x^m.\left(x^4-x^3\right)-x-1\)

\(=x^m.x^3.\left(x+1\right)-\left(x+1\right)\)

\(=\left(x^{m+3}-1\right)\left(x+1\right)\)

 

3:

a: =>(2x-3-x-5)(2x-3+x+5)=0

=>(x-8)(3x+2)=0

=>x=8 hoặc x=-2/3

b: =>x^3-x^2-4(x-1)^2=0

=>x^2(x-1)-4(x-1)^2=0

=>(x-1)(x^2-4x+4)=0

=>x=1 hoặc x=2