K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 2 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^4+b^4)(a^2+b^2)\geq (a^3+b^3)^2\)

\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{(a^3+b^3)^2}{ab(a^3+b^3)(a^2+b^2)}=\frac{a^3+b^3}{ab(a^2+b^2)}(1)\)

Tiếp tục áp dụng BĐT Bunhiacopxky:

\((a^3+b^3)(a+b)\geq (a^2+b^2)^2\)

Mà theo hệ quả BĐT AM-GM: \(a^2+b^2\geq \frac{(a+b)^2}{2}\)

Suy ra \((a^3+b^3)(a+b)\geq (a^2+b^2)\frac{(a+b)^2}{2}\)

\(\Leftrightarrow a^3+b^3\geq \frac{(a+b)(a^2+b^2)}{2}(2)\)

Từ (1); (2) suy ra \(\frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{a^3+b^3}{ab(a^2+b^2)}\geq \frac{a+b}{2ab}\)

Tương tự với các phân thức còn lại và cộng theo vế thu được:

\(\sum \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{a+b}{2ab}+\frac{b+c}{2bc}+\frac{a+c}{2ac}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

12 tháng 2 2018

E cảm ơn nhiều ạ. Mong thầy cô giúp đỡ e thêm. E yếu phần bđt ạ

6 tháng 8 2021

a) \(A=\dfrac{2}{3}+\dfrac{3}{4}.\left(\dfrac{-4}{9}\right)=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\)

b) \(B=2\dfrac{3}{11}.1\dfrac{1}{12}.\left(-2,2\right)=\dfrac{25}{11}.\dfrac{13}{12}.\dfrac{-11}{5}=-\dfrac{65}{12}\)

c) \(C=\left(\dfrac{3}{4}-0,2\right)\left(0,4-\dfrac{4}{5}\right)=\left(\dfrac{3}{4}-\dfrac{1}{5}\right)\left(\dfrac{2}{5}-\dfrac{4}{5}\right)=\dfrac{11}{20}\left(\dfrac{-2}{5}\right)=\dfrac{-11}{50}\)

6 tháng 8 2021

A = 2/3 + -1/3

    = 1/3

B = 25/11 . 13/12 . (-2,2)

    = 325/132 . (-2,2)

    = -65/12

C = 11/20 . -2/5

    = -11/50

Chúc bạn học tốt!! ^^

    = -

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3}{d^3}\)

\(\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{\left(bk+b\right)^3}{\left(dk+d\right)^3}=\dfrac{b^3}{d^3}\)

Do đó: \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\)

4 tháng 11 2018

a) Theo bđt cauchy ta có:

\(a^3+b^3+b^3\ge3\sqrt[3]{a^3.b^6}=3ab^2\)

\(a^3+a^3+b^3\ge3a^2b\)

công vế theo vế ta có \(3\left(a^3+b^3\right)\ge3ab^2+3a^2b\)

\(\Leftrightarrow a^3+b^3+3\left(a^3+b^3\right)\ge a^3+3a^2b+3ab^2+b^3\)

\(\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

suy ra đpcm

4 tháng 11 2018

ta luôn có \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2+a^2+b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow\dfrac{2\left(a^2+b^2\right)}{4}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow\dfrac{\left(a^2+b^2\right)}{2}\ge\dfrac{\left(a+b\right)^2}{2^2}=\left(\dfrac{a+b}{2}\right)^2\)

suy ra đpcm

18 tháng 2 2019

VL CTV MÀ CŨNG HỎI

CTV cũng được phép hỏi chứ bạn.

14 tháng 8 2018

Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\Rightarrow a=3k;b=4k;c=5k\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(3k-4k\right)\left(4k-5k\right)\)

\(=4.\left[\left(3-4\right).k\right].\left[\left(4-5\right).k\right]\)

\(=4.\left[-k\right].\left[-k\right]=4k^2\left(1\right)\)

\(\Rightarrow\left(a-c\right)^2=\left(3k-5k\right)^2=\left[\left(3-5\right).k\right]^2=\left[-2k\right]^2=4k^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)

Vậy \(4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\left(dpcm\right)\)

27 tháng 12 2018

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=1\)

\(\Rightarrow\dfrac{a+b-c}{c}=1\Leftrightarrow a+b-c=c\Leftrightarrow a+b=2c\)

\(\Rightarrow\dfrac{b+c-a}{a}=1\Leftrightarrow b+c-a=a\Leftrightarrow b+c=2a\)

ta có

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\dfrac{a+b}{a}\times\dfrac{c+a}{c}\times\dfrac{b+c}{b}=\dfrac{2c}{a}\times\dfrac{2b}{c}\times\dfrac{2a}{b}=8\)

\(\Rightarrow M=8\)