Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,=x^2-4-x^2-4x-4=-4x-8\\ b,=x^2-4-x^2+2x+3=2x-1\\ c,=x^2-4-x^2-3x+10=-3x+6\\ d,=\left(6x+1-6x+1\right)^2=4\\ e,=25y^2-9-25y^2+40y-16=40y-25\\ f,=\left(2x+1+2x-1\right)^2=16x^2\\ g,=\left(x-3\right)\left(x+3-x+3\right)=9\left(x-3\right)=9x-27\\ h,=\left(x^2-2x+1\right)\left(x+2\right)-x^3+8\\ =x^3-3x+2-x^3+8=-3x+10\\ i,=4x^2-12x-6x-3x^2=x^2-18x\\ k,=10x^2+4x+6x^2-11x+3=16x^2-7x+3\)
a: Xét tứ giác ABNM có
AM//BN
AM=BN
Do đó: ABNM là hình bình hành
mà \(\widehat{MAB}=90^0\)
nên ABNM là hình chữ nhật
\(x^2+\left(x+3\right)\left(x-9\right)=-27\\ \Rightarrow x^2+x^2+3x-9x-27=-27\\ \Rightarrow2x^2-6x=0\\ \Rightarrow2x\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
\(x^2+\left(x+3\right)\left(x-9\right)=-27\)
\(\Rightarrow2x^2-6x=0\)
\(\Rightarrow2x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
<=> x2 -4+3x2= 4x2+4x+1+2x
<=> 4x^2 - 4= 4x^2 +6x +1
<=> - 4=6x +1
<=> 6x= -5
<=> x= \(-\frac{5}{6}\)
a: Xét ΔABC có BM/BC=BD/BA
nên MD//AC
=>MM' vuông góc AB
=>M đối xứngM' qua AB
b: Xét tứ giác AMBM' có
D là trung điểm chung của AB và MM'
MA=MB
Do đó: AMBM' là hình thoi
h) \(=3x\left(2y-3z\right)\left[x^2-5\left(2y-3z\right)\right]=3x\left(2y-3z\right)\left(x^2-10y+15z\right)\)
k) \(=\left(x+2\right)\left(3x-5\right)\)
l) \(=\left(18^2+3\right)\left(x+3\right)=327\left(x+3\right)\)
m) \(=7xy\left(2x-3y+4xy\right)\)
n) \(=2\left(x-y\right)\left(5x-4y\right)\)
a: ĐKXĐ: x<>2; x<>-3
b: \(P+\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\dfrac{x-4}{x-2}\)
c: Để P=-3/4 thì x-4/x-2=-3/4
=>4x-8=-3x+6
=>7x=14
=>x=2(loại)
e: x^2-9=0
=>x=3 (nhận) hoặc x=-3(loại)
Khi x=3 thì \(P=\dfrac{3-4}{3-2}=-1\)