Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=x^4+1+2x^2+3x^3+3x+2x^2
=x^4+3x^3+4x^2+3x+2x^2
=x^3+x^3+2x^3+2x^2+2x^2+2x+x+1
=x^4+3x^3+4x^2+3x+1
Mình làm 1 bài thôi nhé
Bài 5
\(a.1-2y+y^2=\left(1-y\right)^2\)
\(b.\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x-4\right)\left(x+6\right)\)
\(c.1-4x^2=1-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
\(d.27+27x+9x^2+x^3=3^3+3.3^3.x+3.3.x^2+x^3=\left(3+x\right)^3\)
\(f.8x^3-12x^2y+6xy-y^3=\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y-y^3=\left(2x-y\right)^3\)
Bài 4 :
a, \(x^3+3x^2-x-3=x^2\left(x+3\right)-\left(x+3\right)=\left(x+1\right)\left(x-1\right)\left(x+3\right)\)
b, bạn xem lại đề nhé
c, \(x^2-4x+4-y^2=\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)
d, \(5x+5-x^2+1=5\left(x+1\right)+\left(1-x\right)\left(x+1\right)=\left(x+1\right)\left(6-x\right)\)
a) có P đồng thời là trung điểm của AB và NM nên ANBM là hình bình hành
b)dễ cm CBNM là hình bình hành
nên MN=BC
c)để ANBM vuông thì ANBM có 1 góc vuông
ta chọn góc đó là góc <AMB
khi đó BM đồng thời là đường thời là đường cao và trung tuyến nên ABC cân tại B
vậy ABC là tam giác vuông cân tại B
c) giống câu a ta dễ cm BMCK là hình bình hành
suy ra BK // BC
mà BN // BC
nên B,K,N thẳng hàng
có BN=AM (ANBM là hình bình hành)
BK=CM (BMCK là hình bình hành)
AM=CM ( M là trung điểm AC)
suy ra BN=BK và B,K,N thẳng hàng
nên N và K đối xứng qua B
ta co :
(x+y+z).(x/(z+y)+y/(z+x)+z/(x+y))=1
ban cu phan tich cai bieu thuc tren thi ket qua thu duoc se la:
x^2/(z+y)+y^2/(x+z)+z^2/(x+y)+z+x+y=1
ma x+y+z=1===>dpcm
a)tam giác BHA có BI là phân giác(góc ABI=góc HBI) nên \(\dfrac{AI}{IH}=\dfrac{AB}{BH}\Rightarrow AI\cdot BH=AB\cdot IH\)
b)xét tam giác BHA và tam giác BAC có:
góc ABC chung
góc BHA=góc BAC=90 độ
\(\Rightarrow\Delta BHA\infty\Delta BAC\left(g.g\right)\\ \Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow AB^2=BH\cdot BC\)
c)ta có:
theo câu a) \(\dfrac{AI}{IH}=\dfrac{AB}{BH}\Rightarrow\dfrac{IH}{AI}=\dfrac{BH}{AB}\left(1\right)\)
theo câu b) \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
ta lại có BD là phân giác góc ABC nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{AD}{DC}=\dfrac{BH}{AB}\)(2)
từ (1) và (2)\(\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\left(=\dfrac{BH}{AB}\right)\)
1) \(x^3-8x+7=\left(x-1\right)\left(x^2+x-7\right)\)
2) \(x^3+8x^2-9=\left(x-1\right)\left(x^2+9x+9\right)\)
3) \(3x^3-4x+1=\left(x-1\right)\left(3x^2+3x-1\right)\)
4) \(x^4-3x^2+3x-1=\left(x-1\right)\left(x^3+x^2-2x+1\right)\)
5) \(x^4-5x^2+4=\left(x-1\right)\left(x-2\right)\left(x+1\right)\left(x+2\right)\)
1: Ta có: \(x^3-8x+7\)
\(=x^3-x-7x+7\)
\(=x\left(x-1\right)\left(x+1\right)-7\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x-7\right)\)
2: Ta có: \(x^3+8x^2-9\)
\(=x^3-x^2+9x^2-9\)
\(=x^2\left(x-1\right)+9\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^2+9x+9\right)\)
3: Ta có: \(3x^3-4x+1\)
\(=3x^3-3x-x+1\)
\(=3x\left(x-1\right)\left(x+1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(3x^2+3x-1\right)\)
4: Ta có: \(x^4-3x^2+3x-1\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-3x\cdot\left(x-1\right)\)
\(=\left(x-1\right)\cdot\left(x^3+x+x^2+1-3x\right)\)
\(=\left(x-1\right)\left(x^3+x^2-2x+1\right)\)