K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

Ta có: \(2015^{2016}=2015^{2000}.2015^{16}\)

Và \(2016^{2015}=2016^{2000}.2016^{15}\)

=> Ta có: \(2015^{2000}< 2016^{2000}\)

           \(2015^{16}< 2016^{15}\)

Vậy  \(2015^{2016}< 2016^{2015}\)

22 tháng 9 2016

HỒ KHÁNH CHÂU bạn có thể nêu rõ hơn được không

a)\(\frac{2016}{2017}< 1;\frac{2015}{2016}< 1\)

b)\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)

=> \(\frac{2016}{2017}\)và    

\(\frac{2016}{2017}< 1;\frac{2016}{2015}< 1\)

\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)

=> \(\frac{2016}{2017}\)và    \(\frac{2015}{2016}\)<    \(\frac{2017}{2016}\)và    \(\frac{2016}{2015}\)

20 tháng 9 2016

Vì có cùng cơ số nên ta so sánh số mũ 

  \(2015< 2016\)

\(\Rightarrow a^{2015}< a^{2016}\)

tíc mình nha

26 tháng 9 2016

Ta có:

\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)

\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)

\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)

Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)

23 tháng 9 2016

1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)

\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)

\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)

\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)

\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)

\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)

Mà \(2015^{2014}< 2013.2016^{2014}.2015\)

nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Vậy \(2015^{2016}>2016^{2015}.\)

15 tháng 3 2016

Bạn ko thấy là cái đề thiếu trầm trọng à
 

15 tháng 3 2016

bố ông ko ghi đề thì làm sao mà làm

6 tháng 7 2018

\(\frac{4^{1007}.9^{1007}}{3^{2015}.2^{2016}}=\frac{\left(2^2\right)^{1007}.\left(3^2\right)^{1007}}{3^{2015}.2^{2016}}\)

\(=\frac{2^{2014}.3^{2014}}{3^{2015}.2^{2016}}=\frac{2^{2014}.3^{2014}}{3^{2014}.2^{2014}.3.2^2}\)

\(=\frac{1}{3.2^2}=\frac{1}{3.4}=\frac{1}{12}\)

6 tháng 7 2018

Rút gọn

\(\frac{4^{1007}\cdot9^{1007}}{3^{2015}\cdot2^{2016}}=\frac{\left(2^2\right)^{2007}\cdot\left(3^2\right)^{1007}}{3^{2015}\cdot2^{2016}}\)

\(=\frac{2^{2\cdot1007}\cdot3^{2\cdot1007}}{3^{2015}\cdot2^{2016}}=\frac{2^{2014}\cdot3^{2014}}{3^{2015}\cdot2^{2016}}\)

\(=\frac{1}{3.2^2}=\frac{1}{12}\)

Vậy ...

hok tót .

14 tháng 7 2017

co  a<b+c<a+1    =>   a-c<b+c-c<a+1-c    => a-c<b<a+1-c

ma a >1  b<c  suy ra   a phai lon hon c 

ma c>b  suy ra a>b