Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: DE vuông góc với MP tại F
a) Xét tứ giác MEDF có
\(\widehat{EMF}=90^0\)(\(\widehat{NMP}=90^0\), E∈MN, F∈MP)
\(\widehat{DEM}=90^0\)(DE⊥MN)
\(\widehat{DFM}=90^0\)(DF⊥MP)
Do đó: MEDF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a ) Xét ◇DENF có :
Góc N = Góc F = Ê = 90°
\(\Rightarrow\)◇DENF là hình chữ nhật
b ) Trong \(\Delta\)MNP có : ND là đường trung tuyến
\(\Rightarrow\)ND = DP ( vì đường trung tuyến bằng nữa cạnh huyền )
Xét \(\Delta\)NDF và \(\Delta\)PDF có :
- ND = DP ( cmt )
- Góc NFD = Góc PFD ( = 90° )
- DF : cạnh chung
\(\Rightarrow\)\(\Delta\)NDF = \(\Delta\)PDF ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\)NF = PF ( 2 cạnh tương ứng )
\(\Rightarrow\)F là trung điểm NP
a) Xét tứ giác NEDF có +) \(\widehat{ENF}=90^0\)(tam giác MNP vuông tại N)
+) \(\widehat{DFN}=90^0\)(DF vuông góc NP)
+) \(\widehat{DEN}=90^0\)(DE vuông góc MN)
\(\Rightarrow\)tứ giác NEDF là hình chữ nhật
b) Xét \(\Delta DFN\)và \(\Delta DFP\)có:
DF : cạnh chung
DN = DP ( Do ND là trung tuyến của tam giác vuông MNP)
Do đó \(\Delta DFN\)\(=\Delta DFP\left(ch-cgv\right)\)
\(\Rightarrow NF=PF\)
Suy ra F là trung điểm của NP (đpcm)
Giải thích các bước giải:
a. Vì DM⊥AB⇒ˆDMA=90oDM⊥AB⇒DMA^=90o,
DN⊥AC⇒ˆDNA=90oDN⊥AC⇒DNA^=90o,
ΔABC⊥A⇒ˆA=90oΔABC⊥A⇒A^=90o
⇒◊AMDN⇒◊AMDN là hình chữ nhật.
Áp dụng định lý Pitago vào ΔAMD⊥M,AM=3cm,AD=5cmΔAMD⊥M,AM=3cm,AD=5cm có:
MD=√AD2−AM2=4cmMD=AD2−AM2=4cm
⇒SAMDN=AM.DM=12cm2⇒SAMDN=AM.DM=12cm2
b. Gọi AD∩MN=E⇒EAD∩MN=E⇒E là trung điểm AD, MN
Mà AH⊥BCAH⊥BC
ΔAHD⊥H,EΔAHD⊥H,E là trung điểm cạnh huyền ADAD
⇒EH=EA=ED=EM=EN⇒EH=EA=ED=EM=EN
⇒ΔMHN⇒ΔMHN vuông tại HH
⇒ˆMHN=90o⇒MHN^=90o
c. Gọi G,IG,I là trung điểm AB,ACAB,AC suy ra GIGI là đường trung bình của ΔABCΔABC
⇒GI//BC⇒GI//BC
⇒GE,EI⇒GE,EI là đường trung bình ΔABD,ΔADC⇒GE//BD,EI//DCΔABD,ΔADC⇒GE//BD,EI//DC hay GE,EI//BCGE,EI//BC
⇒E∈GI⇒E∈GI
⇒⇒ Trung điểm EE của MNMN di chuyển trên đường trung bình ΔABCΔABC.
d) S = 6 x 8 :2 = 24
mà s cũng có thể = MK x 10 : 2 = 24 ( MK là đường cao)
=> MK = 4,8
e) theo py ta go
=> NK = căn 41,24
MK = căn 69,24
g) theo tính chất tam giác vuông
=> MD = ND = DP = 1/2NP = 10 : 2 = 5
h) theo py ta go
=> KD = 5 - căn 41,24 = ...
bài này mik chưa chắc chắn đâu vì mik thấy số lẻ quá nhưng mà 100% cách làm là đúng nhng7 hơi tắt mog bn thông cảm
nhớ
a) tứ giác MEKH co ba góc vuông suy ra là hcn
b)do tam giác MNP có M=900 áp dụng định lý py ta go để làm
c)SMNP =chiều cao nhân cạnh đáy chia hai
d)áp dụng định lý py-ta-go
a: Xét tứ giác MHKE có
\(\widehat{MHK}=\widehat{MEK}=\widehat{HME}=90^0\)
Do đó: MHKE là hình chữ nhật
b: \(MP=\sqrt{10^2-6^2}=8\left(cm\right)\)
c: \(S_{MNP}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)
d: \(MK=\dfrac{MN\cdot MP}{NP}=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
e: \(\left\{{}\begin{matrix}KN=\dfrac{MN^2}{NP}=\dfrac{6^2}{10}=3.6\left(cm\right)\\KP=10-3.6=6.4\left(cm\right)\end{matrix}\right.\)
a: Xét tứ giác MKIE có
\(\widehat{MKI}=\widehat{MEI}=\widehat{EMK}=90^0\)
Do đó: MKIE là hình chữ nhật
b: Xét ΔMPN có
I là trung điểm của NP
IK//MP
Do đó: K là trung điểm của MN
Ta có: K là trung điểm của MN
mà IK⊥MN
nên IK là đường trung trực của MN
a: Xét tứ giác MEDF có
\(\widehat{MED}=\widehat{MFD}=\widehat{FME}=90^0\)
Do đó: MEDF là hình chữ nhật
mik cảm ơn bn nhưng mik cần câu b và c