K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2020

Sửa đề: DE vuông góc với MP tại F

a) Xét tứ giác MEDF có

\(\widehat{EMF}=90^0\)(\(\widehat{NMP}=90^0\), E∈MN, F∈MP)

\(\widehat{DEM}=90^0\)(DE⊥MN)

\(\widehat{DFM}=90^0\)(DF⊥MP)

Do đó: MEDF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

25 tháng 11 2019

a ) Xét ◇DENF có :

Góc N = Góc F = Ê = 90°

\(\Rightarrow\)◇DENF là hình chữ nhật

b ) Trong \(\Delta\)MNP có : ND là đường trung tuyến 

\(\Rightarrow\)ND = DP ( vì đường trung tuyến bằng nữa cạnh huyền )

Xét \(\Delta\)NDF và \(\Delta\)PDF có :

  • ND = DP ( cmt )
  • Góc NFD = Góc PFD ( = 90° )
  • DF : cạnh chung

\(\Rightarrow\)\(\Delta\)NDF = \(\Delta\)PDF ( cạnh huyền - cạnh góc vuông )

\(\Rightarrow\)NF = PF ( 2 cạnh tương ứng )

\(\Rightarrow\)F là trung điểm NP

25 tháng 11 2019

a) Xét tứ giác NEDF có +)  \(\widehat{ENF}=90^0\)(tam giác MNP vuông tại N)

+) \(\widehat{DFN}=90^0\)(DF vuông góc NP)

+)  \(\widehat{DEN}=90^0\)(DE vuông góc MN)

\(\Rightarrow\)tứ giác NEDF là hình chữ nhật

b) Xét \(\Delta DFN\)và \(\Delta DFP\)có:

   DF : cạnh chung

   DN = DP ( Do ND là trung tuyến của tam giác vuông MNP)

Do đó \(\Delta DFN\)\(=\Delta DFP\left(ch-cgv\right)\)

\(\Rightarrow NF=PF\)

Suy ra F là trung điểm của NP (đpcm)

19 tháng 11 2021

Giải thích các bước giải:

a. Vì DM⊥AB⇒ˆDMA=90oDM⊥AB⇒DMA^=90o,

DN⊥AC⇒ˆDNA=90oDN⊥AC⇒DNA^=90o,

ΔABC⊥A⇒ˆA=90oΔABC⊥A⇒A^=90o

⇒◊AMDN⇒◊AMDN là hình chữ nhật.

Áp dụng định lý Pitago vào ΔAMD⊥M,AM=3cm,AD=5cmΔAMD⊥M,AM=3cm,AD=5cm có:

MD=√AD2−AM2=4cmMD=AD2−AM2=4cm

⇒SAMDN=AM.DM=12cm2⇒SAMDN=AM.DM=12cm2

b. Gọi AD∩MN=E⇒EAD∩MN=E⇒E là trung điểm AD, MN

Mà AH⊥BCAH⊥BC

ΔAHD⊥H,EΔAHD⊥H,E là trung điểm cạnh huyền ADAD

⇒EH=EA=ED=EM=EN⇒EH=EA=ED=EM=EN

⇒ΔMHN⇒ΔMHN vuông tại HH

⇒ˆMHN=90o⇒MHN^=90o

c. Gọi G,IG,I là  trung điểm AB,ACAB,AC suy ra GIGI là đường trung bình của ΔABCΔABC

⇒GI//BC⇒GI//BC

⇒GE,EI⇒GE,EI là đường trung bình ΔABD,ΔADC⇒GE//BD,EI//DCΔABD,ΔADC⇒GE//BD,EI//DC hay GE,EI//BCGE,EI//BC

⇒E∈GI⇒E∈GI

⇒⇒ Trung điểm EE của MNMN di chuyển trên đường trung bình ΔABCΔABC.

1 tháng 11 2016

d) S = 6 x 8 :2 = 24

mà s cũng có thể = MK x 10 : 2 = 24   ( MK là đường cao)

=> MK = 4,8

e) theo py ta go

=> NK = căn 41,24

MK = căn 69,24

g) theo tính chất tam giác vuông 

=> MD = ND = DP = 1/2NP = 10 : 2 = 5

h) theo py ta go 

=> KD = 5 - căn 41,24 = ...

bài này mik chưa chắc chắn đâu vì mik thấy số lẻ quá nhưng mà 100% cách làm là đúng nhng7 hơi tắt mog bn thông cảm

nhớ

1 tháng 11 2016

a) tứ giác MEKH co ba góc vuông suy ra là hcn

b)do tam giác MNP có M=900 áp dụng định lý py ta go để làm

c)SMNP =chiều cao nhân cạnh đáy chia hai

d)áp dụng định lý py-ta-go

a: Xét tứ giác MHKE có 

\(\widehat{MHK}=\widehat{MEK}=\widehat{HME}=90^0\)

Do đó: MHKE là hình chữ nhật

b: \(MP=\sqrt{10^2-6^2}=8\left(cm\right)\)

c: \(S_{MNP}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

d: \(MK=\dfrac{MN\cdot MP}{NP}=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)

e: \(\left\{{}\begin{matrix}KN=\dfrac{MN^2}{NP}=\dfrac{6^2}{10}=3.6\left(cm\right)\\KP=10-3.6=6.4\left(cm\right)\end{matrix}\right.\)

a: Xét tứ giác MKIE có 

\(\widehat{MKI}=\widehat{MEI}=\widehat{EMK}=90^0\)

Do đó: MKIE là hình chữ nhật

b: Xét ΔMPN có

I là trung điểm của NP

IK//MP

Do đó: K là trung điểm của MN

Ta có: K là trung điểm của MN

mà IK⊥MN

nên IK là đường trung trực của MN