Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)
b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)
Bài làm:
a) Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{7}=\frac{y}{5}=\frac{z}{6}=\frac{x-2y+3z}{7-10+18}=\frac{60}{15}=4\)
\(\Rightarrow\hept{\begin{cases}x=28\\y=20\\z=24\end{cases}}\)
b) Ta có: \(\frac{x}{y}=\frac{3}{5}\Leftrightarrow\frac{x}{3}=\frac{y}{5}\) và \(\frac{y}{z}=\frac{5}{8}\Leftrightarrow\frac{y}{5}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{72}{16}=\frac{9}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{45}{2}\\z=36\end{cases}}\)
a) \(\hept{\begin{cases}\frac{x}{7}=\frac{y}{5}=\frac{z}{6}\\x-2y+3z=60\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}\\x-2y+3z=60\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}=\frac{x-2y+3z}{7-10+18}=\frac{60}{15}=4\)
\(\Rightarrow\hept{\begin{cases}x=28\\y=20\\z=24\end{cases}}\)
b) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\\frac{y}{z}=\frac{5}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\\frac{y}{5}=\frac{z}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\\x+y+z=72\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{72}{16}=\frac{9}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{45}{2}\\z=36\end{cases}}\)
a,x/2=y/5
<=> 2x/4=y/5=2x+y/4+5=18/9=2
+,x/2=2 => x=4
+, y/5=2 => y=10
g, x/2=y/5
đặt x/2=y/5=k
=> x=2k ; y=5k
ta có 2k.5k=90
k2.10=90
k2=9
=> k=3 k=-3
+, x/2=2=> x=4 x/2=-2 => x=-4
+, y/5=2 => y=10 y/5=-2 => y=-10
CÁC Ý SAU BN LÀM NỐT NHÉ DỄ MÀ
a) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{2x+y}{4+5}=\frac{18}{9}=2\)
\(\Rightarrow x=4;y=10\)
mấy bài còn lại tương tự
a) \(\frac{x}{7}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}=\frac{x-2y+3z}{7-10+18}=\frac{60}{15}=4\)
\(\Rightarrow\hept{\begin{cases}x=4\cdot7=28\\y=4\cdot5=20\\z=4\cdot6=24\end{cases}}\)
b) ta có \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\\\frac{y}{x}=\frac{5}{8}\Rightarrow\frac{x}{8}=\frac{y}{5}\end{cases}\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{8}}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{72}{16}=4,5\)
\(\Rightarrow\hept{\begin{cases}x=4,5\cdot3=13,5\\y=4,5\cdot5=22,5\\z=4,5\cdot8=36\end{cases}}\)
áp dụng tính chất dãy tỉ số bằng ta đc
x/7=y/5=z/6=x/7=y/-10=z/18=y+z/-10+18=60/8=7,5
x=7.7,5=52,5
y=7.-10=-70
z=7.18=126
vậy x=52,5 y=-70 z=126
a) ta có : 3/4 = -x/4
=> -x = 3×4/4
=> -x =3
=> x = -3
Mặt khác: -x/4 =21/y
Với x = -3, ta có :
-3/4 = 21/y
=> y = 21×4/-3 = -28
Lại có : 21/y = z/-80
Với y = -28, ta có:
22/-28 = z/-80
=> z = 21×-80/-28 = 60
Vậy x= -3; y = -28; z = 60
b) Ta có: y-2/2 = 18/-2
=> y -2 = 2×18/-2
=> y-2 = -18 => y = -16
Lại có : x/3 = y-2/2
Với y = -16, ta có:
x/3 = -16-2/2
=> x/3 = -18/2
=> x = 3×-18/2 => x = -27
Vậy x = -27; y = -16
Lời giải:
Đặt $\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=k$
$\Rightarrow x=2k; y=5k; z=3k$
Thay vào điều kiện $2x-y-3z=10$ có:
$2.2k-5k-3.3k=10$
$\Leftrightarrow -10k=10$
$\Leftrightarrow k=-1$
$\Rightarrow x=-2; y=-5; z=-3$
Vậy.........