Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 5. Cho x,y dương thỏa mãn \(x+y=\dfrac{1}{2}\).Tìm giá trị nhỏ nhất của
\(P=\dfrac{1}{x}+\dfrac{1}{y}\)
Giải:
\(P=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{\dfrac{1}{2}}{xy}=\dfrac{2}{xy}\)
--> P nhỏ nhất khi \(xy\) lớn nhất
Ta có:
\(x^2+y^2\ge2xy\) ( BĐT AM-GM )
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow1\ge4xy\)
\(\Leftrightarrow xy\le\dfrac{1}{4}\)
\(\Rightarrow P\ge2:\dfrac{1}{4}=8\)
Vậy \(Min_P=8\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{4}\)
A=sin240+cos210+2sin40cos10-cos240-sin210-2sin10cos40+cos(90+50)
A=(sin240-cos240)+(cos210-sin210)+2(sin40cos10-cos40sin10)-sin50
A=(sin40-cos40)(sin40+cos40)-(sin10-cos10)(sin10+cos10)+1-sin50
A=\(\sqrt{2}\) sin(40-\(\frac{\pi}{4}\))\(\sqrt{2}\) cos(40-\(\frac{\pi}{4}\))-\(\sqrt{2}\)sin(10-\(\frac{\pi}{4}\))\(\sqrt{2}\) cos(10-\(\frac{\pi}{4}\))+1-sin50
A=-2sin5cos5+2sin35cos35+1-sin50
A= - sin10+sin70+1-sin50
A= 2cos40sin30-sin(90-40)+1
A=cos40-cos40+1 =1
Câu 3:
\(A=cos\frac{\pi}{7}.cos\frac{5\pi}{7}.cos\frac{4\pi}{7}=cos\frac{\pi}{7}.cos\left(\pi-\frac{2\pi}{7}\right).cos\frac{4\pi}{7}\)
\(A=-cos\frac{\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{2}.2sin\frac{\pi}{7}.cos\frac{\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{2}.sin\frac{2\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{4}sin\frac{4\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{8}sin\frac{8\pi}{7}=-\frac{1}{8}sin\left(\pi+\frac{\pi}{7}\right)=\frac{1}{8}sin\frac{\pi}{7}\)
\(\Rightarrow A=\frac{1}{8}\)
Câu 4:
Đầu tiên ta chứng minh công thức:
\(tana+tanb=\frac{sina}{cosa}+\frac{sinb}{cosb}=\frac{sina.cosb+cosa.sinb}{cosa.cosb}=\frac{sin\left(a+b\right)}{cosa.cosb}\)
Áp dụng để biến đổi tử số:
\(tan30+tan60+tan40+tan50=\frac{sin90}{cos30.cos60}+\frac{sin90}{cos40.cos50}=\frac{1}{cos30.cos60}+\frac{1}{cos40.cos50}\)
\(=\frac{2}{cos90+cos30}+\frac{2}{cos90+cos10}=\frac{2}{cos30}+\frac{2}{cos10}=2\left(\frac{cos30+cos10}{cos30.cos10}\right)\)
\(=2\left(\frac{2cos20.cos10}{cos30.cos10}\right)=\frac{4.cos20}{cos30}=\frac{8\sqrt{3}}{3}.cos20\)
\(\Rightarrow A=\frac{\frac{8\sqrt{3}}{3}cos20}{cos20}=\frac{8\sqrt{3}}{3}\)
Câu 5:
\(cos54.cos4-cos36.cos86=cos54.cos4-cos\left(90-54\right).cos\left(90-4\right)\)
\(=cos54.cos4-sin54.sin4=cos\left(54+4\right)=cos58\)
Câu 1:
\(A=\frac{1}{2sin10}-2sin70=\frac{1-4sin10.sin70}{2sin10}=\frac{1+2\left(cos80-cos60\right)}{2sin10}\)
\(=\frac{1+2cos80-1}{2sin10}=\frac{2cos80}{2sin10}=\frac{sin10}{sin10}=1\)
Câu 2:
\(cos10.cos30.cos50.cos70=cos10.cos30.\frac{1}{2}\left(cos120+cos20\right)\)
\(=\frac{1}{2}cos30\left(cos10.cos120+cos10.cos20\right)\)
\(=\frac{1}{2}cos30\left(cos10.cos120+\frac{1}{2}\left(cos30+cos10\right)\right)\)
\(=\frac{1}{2}cos30\left(cos10.cos120+\frac{1}{2}cos30+\frac{1}{2}cos10\right)\)
\(=\frac{1}{2}.\frac{\sqrt{3}}{2}\left(-\frac{1}{2}cos10+\frac{1}{2}\frac{\sqrt{3}}{2}+\frac{1}{2}cos10\right)\)
\(=\frac{3}{16}\)
C= cos80o + cos40o + cos(π - 20o)
= 2cos\(\frac{80^o+40^o}{2}\).cos\(\frac{80^o-40^o}{2}\) - cos20o
= 2.0,5.cos20o - cos20o
=0
Vaayj C=0
\(A=cos10+cos170+cos40+cos140+cos70+cos110\)
\(A=cos10+cos\left(180-10\right)+cos40+cos\left(180-40\right)+cos70+cos\left(180-70\right)\)
\(A=cos10-cos10+cos40-cos40+cos70-cos70\)
\(A=0\)
\(B=sin5+sin355+sin10+sin350+...+sin175+sin185+sin360\)
\(B=sin5+sin\left(360-5\right)+sin10+sin\left(360-10\right)+...+sin175+sin\left(360-175\right)+sin360\)
\(B=sin5-sin5+sin10-sin10+...+sin175-sin175+sin360\)
\(B=sin360=0\)
\(C=cos^22+cos^288+cos^24+cos^284+...+cos^244+cos^246\)
\(C=cos^22+cos^2\left(90-2\right)+cos^24+cos^2\left(90-4\right)+...+cos^244+cos^2\left(90-44\right)\)
\(C=cos^22+sin^22+cos^24+sin^24+...+cos^244+sin^244\)
\(C=1+1+...+1\) (có \(\frac{44-2}{2}+1=22\) số 1)
\(\Rightarrow C=22\)
Chú ý rằng: sin450 = cos450, sin400 = cos500, sin500 = cos400
Ta được:
\(\dfrac{\cos50^0-\cos45^0+\cos50^0}{\cos40^0-\cos45^0+\cos50^0}-\dfrac{6\times3\left(\dfrac{\sqrt{3}}{3}+\tan15^0\right)}{3\left(1-\dfrac{\sqrt{3}}{3}\tan15^0\right)}\)
\(=1-6\left(\dfrac{\tan30^0+\tan15^0}{1-\tan30^0\times\tan15^0}\right)\)
\(=1-6\tan45^0=-5\)
a)\(sin^2\left(180^o-\alpha\right)+tan^2\left(180-\alpha\right).tan^2\left(270^o+\alpha\right)\)\(+sin\left(90^o+\alpha\right)cos\left(\alpha-360^o\right)\)
\(=sin^2\alpha+tan^2\alpha.cot^2\alpha+cos\alpha cos\alpha\)
\(=sin^2\alpha+cos^2\alpha+\left(tan\alpha cot\alpha\right)^2=1+1=2\).
\(\dfrac{cos\left(\alpha-180^o\right)}{sin\left(180^o-\alpha\right)}+\dfrac{tan\left(\alpha-180^o\right)cos\left(180^o+\alpha\right)sin\left(270^o+\alpha\right)}{tan\left(270^o+\alpha\right)}\)
\(=\dfrac{cos\left(180^o-\alpha\right)}{sin\left(180^o-\alpha\right)}+\dfrac{-tan\left(180^o-\alpha\right).cos\alpha.sin\left(90^o+\alpha\right)}{-tan\left(90^o+\alpha\right)}\)
\(=tan\left(180^o-\alpha\right)+\dfrac{tan\alpha.cos\alpha.cos\alpha}{cot\alpha}\)
\(=-tan\alpha+tan^2\alpha cos^2\alpha\)
\(=tan\alpha\left(-1+tan\alpha cos^2\alpha\right)\)
\(=tan\alpha\left(sin\alpha cos\alpha-1\right)\).
Tính giá trị của biểu thức :
a) \(2\sin30^0+3\cos45^0-\sin60^0\)
b) \(2\cos30^0+3\sin45^0-\cos60^0\)
a)
\(2sin30+3sin45^o-sin60^o=2.\dfrac{1}{2}+3.\dfrac{\sqrt{2}}{2}-\dfrac{\sqrt{3}}{2}\)\(=\dfrac{2+3\sqrt{2}-\sqrt{3}}{2}\).
b)\(2cos30^o+3sin45^o-cos60^o=2.\dfrac{\sqrt{3}}{2}+3.\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\)\(=\dfrac{2\sqrt{3}+3\sqrt{2}-1}{2}\).
a) \(\sin220^0< \sin10^0< \sin40^0< \sin90^0\)
b) \(\cos138^0< \cos90^0< \cos15^0< \cos0^0\)
\(A=cos20.cos40.cos60.cos80\)
\(A.sin20=sin20.cos20.cos40.cos60.cos80\)
\(Asin20=\frac{1}{2}sin40.cos40.cos80.cos60\)
\(Asin20=\frac{1}{4}sin80.cos80.cos60\)
\(Asin20=\frac{1}{8}sin160.cos60\)
\(Asin20=\frac{1}{8}sin20.cos60\)
\(A=\frac{1}{8}cos60=\frac{1}{16}\)
\(B=sin10.cos40.cos20\)
\(Bcos10=sin10.cos10.cos20.cos40\)
\(Bcos10=\frac{1}{2}sin20.cos20.cos40\)
\(Bcos10=\frac{1}{4}sin40.cos40\)
\(Bcos10=\frac{1}{8}sin80=\frac{1}{8}cos10\)
\(B=\frac{1}{8}\)