Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\)
\(=\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\)
\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
mà \(\frac{a}{b}+\frac{b}{a}\ge2\)(dễ chứng minh)
chứng minh tương tự ta có
\(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\)\(\ge\)6
\(\left(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\right)^2\ge6^2=36\)(2) (a>0; b>0; c>0)
tiếp theo chứng minh
\(36\ge4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(18\ge2\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(18a^2+18b^2+18c^2\ge2ab+2bc+2ca\)
\(16\left(a^2+b^2+c^2\right)+\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(16\left(a^2+b^2+c^2\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (bất đẳng thức luôn đúng )
suy ra bất đẳng thức
\(36\ge4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)luôn đúng (2)
từ (1) và (2) suy ra
\(\left(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\right)^2\ge\text{}\text{36}\ge\)\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{a+b}{ab}\right)\ge4\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab}\ge4\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì bđt cuối luôn đúng mà các phép biến đổi trên là tương đương nên bđt ban đầu luôn đúng
Dầu "=" xảy ra \(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)
a)
Đặt \(A=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(\Rightarrow A=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)
Áp dụng BĐT Schwarz , ta có :
\(A\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\) (1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{ab+bc+ac}\ge3\) (2)
Từ (1) và (2) , suy ra : \(A\ge\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
b)
\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2}{a+b+c}=4\left(a+b+c\right)\)
Mk c/m ngược lại có đc ko?
\(a,\left(a+b\right)^3-3ab\left(a+b\right)=a^3+b^3\)
\(\Rightarrow a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)
\(\Rightarrow a^3+b^3=a^3+b^3\left(dpcm\right)\)
\(b,\left(a-b\right)^3+3ab\left(a-b\right)=a^3-b^3\)
\(\Rightarrow a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2=a^3-b^3\)
\(\Rightarrow a^3-b^3=a^3-b^3\left(dpcm\right)\)
1)
Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)
Dấu "=" xảy ra khi a=b=c
2)
\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)
Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)
\(a\text{)}\:VP=-\left(b^3+3a^2b-3ab^2-a^3\right)=a^2-3a^2b+3ab^2-b^3=\left(a-b\right)^3=VT\left(đpcm\right)\)
\(b\text{)}\left(-a-b\right)^2=\left[\left(-1\right)\left(a+b\right)\right]^2=\left(-1\right)^2.\left(a+b\right)^2=\left(a+b\right)^2\left(đpcm\right)\)
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=2+\frac{a}{b}+\frac{b}{a}\)
Áp dụng bđt AM-GM: \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ab}}=2\)
\(\Rightarrow2+\frac{a}{b}+\frac{b}{a}\ge2+2=4\)
\("="\Leftrightarrow a=b\)