Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)
Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0
Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)
Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)
Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)
Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)
Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH
Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM
Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)
Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)
Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)
Lần sau em đăng vào học 24 nhé!
Hướng dẫn:
Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C
A ( a; 3 - a); C ( c: -2c -1 )
Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)
=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM
=> tìm đc tọa độ B theo a và c
Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c
Lại có: AB vuông CH => Thêm 1 phương trình theo a và c
=> Tìm đc a, c => 3 đỉnh
Vì B thuộc đường thẳng (AB) nên \(B\left(a;1-2a\right)\)
Tương tự \(C\left(-2-4b;3b\right)\)
Ta có : \(\overrightarrow{MB}=\left(a-1;4-2a\right);\overrightarrow{MC}=\left(-3-4b;3b+3\right)\)
Ta có \(\left(AB\right)\cap\left(AC\right)=\left\{A\right\}\Rightarrow A\left(2;-3\right)\)
Vì B, M, C thẳng hàng, \(3MB=2MC\) nên ta có : \(3\overrightarrow{MB}=2\overrightarrow{MC}\) hoặc \(3\overrightarrow{MB}=-2\overrightarrow{MC}\)
- Trường hợp 1 : \(3\overrightarrow{MB}=2\overrightarrow{MC}\Rightarrow\begin{cases}3\left(a-1\right)=2\left(-3-4b\right)\\3\left(4-2a\right)=2\left(3b+3\right)\end{cases}\)\(\Rightarrow\begin{cases}a=\frac{11}{5}\\b=\frac{-6}{5}\end{cases}\)
\(\Rightarrow B\left(\frac{11}{5};-\frac{17}{5}\right);C\left(\frac{11}{5};-\frac{18}{5}\right)\Rightarrow G\left(\frac{7}{3};\frac{10}{3}\right)\)
- Trường hợp 2 : \(3\overrightarrow{MB}=-2\overrightarrow{MC}\Rightarrow\begin{cases}3\left(a-1\right)=-2\left(-3-4b\right)\\3\left(4-2a\right)=-2\left(3b+3\right)\end{cases}\)\(\Rightarrow\begin{cases}a=3\\b=0\end{cases}\)
\(\Rightarrow B\left(3;-5\right);C\left(-2;0\right)\Rightarrow G\left(1;\frac{-8}{3}\right)\)
Lỗi nên bạn tự vẽ hình nha !!
Hình lỗi !!!
=> Tọa độ A là :
\(\hept{\begin{cases}x+y=2\\2x+6y=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{4}\\y=\frac{-7}{4}\end{cases}}}\)
=> Tọa độ B là :
\(\hept{\begin{cases}x+y=2\\x-y=0\end{cases}\Leftrightarrow x=y=1}\)
<=> Tọa độ C là
C(-2 -1 ,1 - 1 )
=> C ( -3 ; 0 )
Vậy A ( \(\frac{15}{4};\frac{-7}{4}\))
B ( 1 ; 1 )
C( -3;0)
A B C h d
Từ giả thiết suy ra \(\overrightarrow{AB}=\left(1;4\right)\Rightarrow AB=\sqrt{26}\) và đường thẳng AB có phương trình tổng quát :
\(5x-y-7=0\)
Vì tam giác ABC có \(AB=\sqrt{26}\) và diện tích \(S=8\) nên bài toán quy về tìm điểm \(C\in d:2x+y-2=0\) sao cho \(d\left(C;Ab\right)=\frac{16}{\sqrt{26}}\)
Xét điểm \(C\left(x;2\left(1-x\right)\right)\in d\) ta có :
\(d\left(C;AB\right)=\frac{16}{\sqrt{26}}\Leftrightarrow\frac{\left|5x-2\left(1-x\right)-7\right|}{\sqrt{26}}=\frac{16}{\sqrt{26}}\)
Giải phương trình thu được \(x=-1\) hoặc \(x=\frac{25}{7}\)
Do đó tìm được 2 điểm \(C_1\left(-1;4\right)\) và \(C_2\left(\frac{25}{7};-\frac{36}{7}\right)\) thỏa mãn yêu cầu đề bài
Đề bài sai rồi bạn
Thay tọa độ A vào pt BD thấy thỏa mãn. Suy ra A thuộc BD, điều này hoàn toàn vô lý :)
Điều kiện của phương trình là x ≥ 1; x ≠ 2 và x ≠ -2. Vì x > -1 thì x ≠ 2. Vì x > -1 thì x ≠ -2 suy ra điều kiện của phương trình là x ≥ -1; x ≠ 2
Ta thực hiện theo các bước:
Bước 1: Chuyển phương trình ban đầu của Parabol (P) về dạng chính tắc (P): y2 = ±2px hoặc (P): x2 = ±2py.
Bước 2: Xét các khả năng:
Dạng 1: Parabol (P): y2 = 2px (p>0)
Các thuộc tính của (P) gồm:
Các thuộc tính của (P) gồm:
Các thuộc tính của (P) gồm:
Các thuộc tính của (P) gồm:
ta thực hiện phép tịnh tiến hệ trục Oxy theo vectơ OI−→ với I(α, β) thành hệ trục IXY với công thức đổi trục:
{X=x−αY=y−β ⇔ {x=X+αy=Y+β
ta được: (P): Y2 = ±2pX hoặc (P): X2 = ±2pY.
từ đó chỉ ra các thuộc tính của (P) trong hệ trục IXY rồi suy ra các thuộc tính của (P) trong hệ trục Oxy.
GiảiThí dụ 1. Chứng tỏ rằng phương trình Ax2 + By = 0, với A, B ≠ 0 là phương trình của một Parabol có đỉnh O(0, 0), nhận Oy làm trục đối xứng. Tìm tiêu điểm và phương trình đường chuẩn của Parabol đó.
Viết lại phương trình dưới dạng:
Ax2 = - By ⇔ x2 = - BAy ⇔−BA=2p x2 = 2py
đó chính là phương trình của một Parabol có đỉnh O(0, 0), nhận Oy làm trục đối xứng. Parabol đó có:
Thí dụ 2. Chuyển phương trình Parabol (P) về dạng chính tắc, từ đó xác định các thuộc tính của nó và vẽ hình, biết (P) : y2 + 2y - 4x - 3 = 0.
Giải- Bạn đọc tự vẽ hình
Chuyển phương trình của (P) về dạng: (P): (y + 1)2 = 4(x + 1)
Thực hiện phép tịnh tiến hệ trục toạ độ Oxy theo vectơ OS−→ với S(-1, -2) thành hệ trục SXY, với công thức đổi trục:
{X=x+1Y=y+1 ⇔ {x=X−1y=Y−1
Khi đó: (P): Y2 = 4X ⇒ p = 2.
Khi đó trong hệ trục SXY, (P) có các thuộc tính:
Do đó, trong hệ trục Oxy, (P) có các thuộc tính:
Đỉnh S(-1, -1).
Thí dụ 3. Cho họ đường cong (Pm) : y2 - 2my - 2mx + m2 = 0.
GiảiTìm điều kiện của m để (Pm) là phương trình một Parabol, khi đó:
a. Tìm quĩ tích đỉnh của họ (Pm).
b. Tìm quĩ tích tiêu điểm của họ (Pm).
Chuyển phương trình của (Pm) về dạng:
(Pm): (y - m)2 = 2mx
Để phương trình trên là phương trình của một Parabôn điều kiện là m ≠ 0.
Thực hiện phép tịnh tiến hệ trục toạ độ Oxy theo vectơ OS−→ với S(0; m) thành hệ trục SXY, với công thức đổi trục:
{X=xY=y−m ⇔ {x=Xy=Y+m
Khi đó: (P): Y2 = 2mX ⇒ p = m.
Khi đó trong hệ trục SXY, (Pm) có các thuộc tính:
Do đó trong hệ trục Oxy, (Pm) có các thuộc tính:
a. Quĩ tích đỉnh của họ (Pm).
S : {x=0y=m ⇒ x = 0.
Vậy quĩ tích đỉnh của (Pm) thuộc trục tung.
b. Quĩ tích tiêu điểm của họ (Pm).
F: {x=m2y=m ⇒ y = 2x ⇔ 2x - y = 0.
Vậy quĩ tích tiêu điểm của (Pm) thuộc đường thẳng 2x - y = 0.
dài dữ