Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là qđ AB (km)
Vận tốc đi là \(25\left(\dfrac{km}{h}\right)\)
Vận tốc về là \(30\left(\dfrac{km}{h}\right)\)
Thời gian đi là \(\dfrac{x}{25}\left(h\right)\)
Thời gian về là \(\dfrac{x}{30}\left(h\right)\)
20p = 1/3(h)
Do thời gian về ít hơn lúc đi là 20p nên ta có
\(\dfrac{x}{25}-\dfrac{x}{30}=\dfrac{1}{3}\\ \Leftrightarrow30x-25x=\dfrac{1}{3}\\ \Leftrightarrow5x=\dfrac{1}{3}\\ \Leftrightarrow x=15\)
Cách giải đây nhé!
Gọi thời gian lúc đi là x(x>0) (h)
Đổi 20 phút = 1/3 giờ
Do thời gian về ít hơn thời gian đi là 20 phút nên thời gian lúc về là x−1/3
Do quãng đường không đổi nên ta có phương trình :
25x= 30(x−1/3)
⇔ 25x= 30x−10
⇔ −5x= −10
a: A=x^2+4x+4+5
=(x+2)^2+5>=5
Dấu = xảy ra khi x=-2
b: =3/2(x^2+2/3x+2/3)
=3/2(x^2+2*x*1/3+1/9+5/9)
=3/2(x+1/3)^2+15/18>=15/18=5/6
Dấu = xảy ra khi x=-1/3
e: =x^2-2x+1+4
=(x-1)^2+4>=4
Dấu = xảy ra khi x=1
f: =2(x^2-3x)
=2(x^2-3x+9/4-9/4)
=2(x-3/2)^2-9/2>=-9/2
Dấu = xảy ra khi x=3/2
h: =-(x^2-4x-3)
=-(x^2-4x+4-7)
=-(x-2)^2+7<=7
Dấu = xảy ra khi x=2
a) x(4x + 2) = 4x2 - 14
⇔ 4x2 + 2x = 4x2 - 14
⇔ 4x2 - 4x2 + 2x = -14
⇔ 2x = -14
⇔ x = -7
Vậy tập nghiệm S = ......
b) (x2 - 9)(2x - 1) = 0
⇔ x2 - 9 = 0 hoặc 2x - 1 = 0
⇔ x2 = 9 hoặc 2x = 1
⇔ x = 3 hoặc -3 hoặc x = \(\dfrac{1}{2}\)
Vậy .......
c) \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{x^2-4}\)
⇔ \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{\left(x-2\right)\left(x+2\right)}\)
ĐKXĐ: x - 2 ≠ 0 và x + 2 ≠ 0
⇔ x ≠ 2 và x ≠ -2MSC (mẫu số chung): (x - 2)(x + 2)Quy đồng mẫu hai vế và khử mẫu ta được:3x + 6 + 4x - 8 = x - 12⇔ 3x + 4x - x = 8 - 6 - 12⇔ 6x = -10⇔ x = \(-\dfrac{5}{3}\) (nhận)Vậy ........Bài 2:
Hình 3:
Xét ΔABC có AD là phân giác
nên x/3,5=7,2/4,5
=>x/3,5=1,8
=>x=6,3
Hình 4:
Xet ΔABC có MN//BC
nên 6/3=4/x
=>4/x=2
=>x=2
Bài 5
a) Ta có:
AB/A'B' = 6/4 = 3/2
AC/A'C' = 9/6 = 3/2
BC/B'C' = 12/8 = 3/2
⇒AB/A'B' = AC/A'C' = BC/B'C' = 3/2
⇒∆ABC ∽ ∆A'B'C' (c-c-c)
b) Do ∆ABC ∽ ∆A'B'C' (c-c-c)
⇒∠A = ∠A' = 100⁰
∠B = ∠B' = 44⁰
⇒∠C = 180⁰ - (∠A + ∠B)
= 180⁰ - (100⁰ + 44⁰)
= 36⁰
c) Tỉ số chu vi của ∆ABC và ∆A'B'C' là:
(AB + AC + BC)/(A'B' + A'C' + B'C')
= (6 + 9 + 12)/(4 + 6 + 8)
= 27/18
= 3/2
a)\(5x^2.\left(10x^4-5x^3+2\right)=50x^6-25x^5+10x^2\)
b) \(\left(x^2-5x+3\right).\left(-5x\right)=-5x^3+25x^2-15x\)
c) \(\left(5x-2y\right)\left(x^2-xy+1\right)=5x^3-5x^2y+5x-2x^2y+2xy^2-2y\\ =5x^3-7x^2y+2xy^2+5x-2y\)
d) \(\left(3x-2\right)\left(9x^2+6x-4\right)\\ =27x^3+18x^2-12x-18x^2-12x+8=27x^3+8\)
a) \(5x^2\left(10x^4-5x^3+2\right)=50x^6-25x^5+10x^2\)
b) \(\left(x^2-5x+3\right)\left(-5x\right)=-5x^3+25x^2-15x\)
c) \(\left(5x-2y\right)\left(x^2-xy+1\right)=5x^3-5x^2y+5x-2x^2y+2xy^2-2y=5x^3-7x^2y+2xy^2+5x-2y\)
d) \(\left(3x-2\right)\left(9x^2+6x-4\right)=27x^3+18x^2-12x-18x^2-12x+8=27x^3-24x+8\)
Bài cuối mình không thấy rõ đề nhưng mình đoán là thế này bạn nhé.
a, Áp dụng định lý Ta-lét ta có:
\(\dfrac{AD}{DB}=\dfrac{AE}{EC}\Rightarrow\dfrac{4}{x}=\dfrac{5}{10}\Rightarrow x=4:\dfrac{1}{2}\Rightarrow x=8\)
Áp dụng hệ quả định lý Ta-lét ta có:
\(\dfrac{AE}{AC}=\dfrac{DE}{BC}\Rightarrow\dfrac{5}{15}=\dfrac{6}{y}\Rightarrow y=6:\dfrac{1}{3}\Rightarrow y=18\)
b, Áp dụng định lý phân giác ta có:
\(\dfrac{DB}{DC}=\dfrac{AB}{AC}\Rightarrow\dfrac{5}{6}=\dfrac{10}{x}\Rightarrow x=10:\dfrac{5}{6}\Rightarrow x=12\)
Bài toán đâu vậy bn
bài đâu bạn