K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(AN=NB=\dfrac{AB}{2}\)

\(AM=MC=\dfrac{AC}{2}\)

mà AB=AC

nên AN=NB=AM=MC

Xét ΔNBC và ΔMCB có

NB=MC

\(\widehat{NBC}=\widehat{MCB}\)(ΔABC cân tại A)

BC chung

Do đó: ΔNBC=ΔMCB

b: Xét ΔABC có

AD,BM,CN là các đường trung tuyến

AD,BM,CN đồng quy tại G

Do đó: G là trọng tâm của ΔABC

=>\(AG=2GD\)

mà AG=GE

nên GE=2GD

=>D là trung điểm của GE

=>DG=DE

c: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD\(\perp\)BC

Xét ΔCGE có

CD là đường cao

CD là đường trung tuyến

Do đó: ΔCGE cân tại C

d: Xét ΔABC có

BM là đường trung tuyến

G là trọng tâm

Do đó: \(BG=\dfrac{2}{3}BM=10\left(cm\right)\)

D là trung điểm của BC

=>DB=DC=BC/2=8(cm)

ΔGDB vuông tại D

=>\(GD^2+DB^2=GB^2\)

=>\(GD^2=10^2-8^2=36\)

=>\(GD=\sqrt{36}=6\left(cm\right)\)

\(\Leftrightarrow AG=2\cdot GD=12\left(cm\right)\)