\(A=(\frac{1}{\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 giờ trước (8:21)

\documentclass{article}

\usepackage{amsmath}

\usepackage{amsfonts}


\begin{document}


Cho biểu thức: $A = \left( \frac{1}{\sqrt{x}-1} - \frac{\sqrt{x}}{x-1} \right) : \frac{1}{\sqrt{x}+1}$.


\begin{enumerate}

\item Tìm điều kiện và rút gọn biểu thức.

\item Tìm các giá trị của $x$ để $A < 0$.

\end{enumerate}


\section*{Lời giải}


\subsection*{a) Tìm điều kiện và rút gọn biểu thức}

\subsubsection*{Điều kiện xác định}

Để biểu thức $A$ có nghĩa, các điều kiện sau phải được thỏa mãn:

\begin{itemize}

\item $x \ge 0$ (để các căn thức có nghĩa).

\item $\sqrt{x}-1 \ne 0 \Rightarrow \sqrt{x} \ne 1 \Rightarrow x \ne 1$.

\item $x-1 \ne 0 \Rightarrow x \ne 1$.

\item $\sqrt{x}+1 \ne 0$, điều này luôn đúng với $x \ge 0$.

\end{itemize}

Vậy, điều kiện xác định của biểu thức là $x \ge 0$ và $x \ne 1$.


\subsubsection*{Rút gọn biểu thức}

Ta có:

$$A = \left( \frac{1}{\sqrt{x}-1} - \frac{\sqrt{x}}{x-1} \right) : \frac{1}{\sqrt{x}+1}$$

Phân tích mẫu số $x-1 = (\sqrt{x}-1)(\sqrt{x}+1)$:

$$A = \left( \frac{1}{\sqrt{x}-1} - \frac{\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)} \right) \cdot (\sqrt{x}+1)$$

$$A = \left( \frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)} - \frac{\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)} \right) \cdot (\sqrt{x}+1)$$

$$A = \frac{\sqrt{x}+1-\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)} \cdot (\sqrt{x}+1)$$

$$A = \frac{1}{(\sqrt{x}-1)(\sqrt

12 giờ trước (9:51)

a: ĐKXĐ: x>=0; x<>1

\(A=\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{x-1}\right):\frac{1}{\sqrt{x}+1}\)

\(=\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\left(\sqrt{x}+1\right)\)

\(=\frac{\sqrt{x}+1-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}+1\right)=\frac{1}{\sqrt{x}-1}\)

b: Để A<0 thì \(\frac{1}{\sqrt{x}-1}<0\)

=>\(\sqrt{x}-1<0\)

=>\(\sqrt{x}<1\)

=>0<=x<1

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
21 tháng 11 2021

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

11 tháng 4 2021

a) Thay x = 25 vào biểu thức A , ta có 

\(A=\frac{5-2}{5-1}=\frac{3}{4}\)

b) \(B=\frac{x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{4\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B =\frac{x+1+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B =\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

11 tháng 4 2021

a, Ta có : \(x=25\Rightarrow\sqrt{x}=5\)

Thay vào biểu thức A ta được : 

\(A=\frac{5-2}{5-1}=\frac{3}{4}\)

Vậy với x = 25 thì A = 3/4 

b, Với \(x\ge0;x\ne1\)

 \(B=\frac{x-5}{x-1}-\frac{2}{\sqrt{x}+1}+\frac{4}{\sqrt{x}-1}\)

\(=\frac{x-5-2\left(\sqrt{x}-1\right)+4\left(\sqrt{x}+1\right)}{x-1}=\frac{x-5-2\sqrt{x}+2+4\sqrt{x}+4}{x-1}\)

\(=\frac{x+1+2\sqrt{x}}{x-1}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}\pm1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

c, Ta có P = A/B hay \(P=\frac{\sqrt{x}-2}{\sqrt{x}-1}.\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

\(\sqrt{P}< \frac{1}{2}\)hay \(\sqrt{\frac{\sqrt{x}-2}{\sqrt{x}+1}}< \frac{1}{2}\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< \frac{1}{4}\)

\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}-\frac{1}{4}< 0\Leftrightarrow\frac{4\sqrt{x}-8-\sqrt{x}-1}{4\left(\sqrt{x}+1\right)}< 0\)

\(\Rightarrow3\sqrt{x}-9>0\)do \(4\left(\sqrt{x}+1\right)>0\)

\(\Leftrightarrow3\sqrt{x}>9\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)

28 tháng 10 2020

\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\div\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\times\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)

Để A > 0 

=> \(\frac{\sqrt{x}-1}{\sqrt{x}}>0\)

Xét hai trường hợp :

1. \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>1\\\sqrt{x}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>0\end{cases}}\Leftrightarrow x>1\)

2. \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}< 0\end{cases}}\)( dễ thấy trường hợp này không xảy ra :> )

Vậy với x > 1 thì A > 0

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia