Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

a) Thay x = 25 vào biểu thức A , ta có
\(A=\frac{5-2}{5-1}=\frac{3}{4}\)
b) \(B=\frac{x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{4\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B =\frac{x+1+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B =\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a, Ta có : \(x=25\Rightarrow\sqrt{x}=5\)
Thay vào biểu thức A ta được :
\(A=\frac{5-2}{5-1}=\frac{3}{4}\)
Vậy với x = 25 thì A = 3/4
b, Với \(x\ge0;x\ne1\)
\(B=\frac{x-5}{x-1}-\frac{2}{\sqrt{x}+1}+\frac{4}{\sqrt{x}-1}\)
\(=\frac{x-5-2\left(\sqrt{x}-1\right)+4\left(\sqrt{x}+1\right)}{x-1}=\frac{x-5-2\sqrt{x}+2+4\sqrt{x}+4}{x-1}\)
\(=\frac{x+1+2\sqrt{x}}{x-1}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}\pm1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
c, Ta có P = A/B hay \(P=\frac{\sqrt{x}-2}{\sqrt{x}-1}.\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
\(\sqrt{P}< \frac{1}{2}\)hay \(\sqrt{\frac{\sqrt{x}-2}{\sqrt{x}+1}}< \frac{1}{2}\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< \frac{1}{4}\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}-\frac{1}{4}< 0\Leftrightarrow\frac{4\sqrt{x}-8-\sqrt{x}-1}{4\left(\sqrt{x}+1\right)}< 0\)
\(\Rightarrow3\sqrt{x}-9>0\)do \(4\left(\sqrt{x}+1\right)>0\)
\(\Leftrightarrow3\sqrt{x}>9\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)

\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\div\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\times\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Để A > 0
=> \(\frac{\sqrt{x}-1}{\sqrt{x}}>0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>1\\\sqrt{x}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>0\end{cases}}\Leftrightarrow x>1\)
2. \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}< 0\end{cases}}\)( dễ thấy trường hợp này không xảy ra :> )
Vậy với x > 1 thì A > 0

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia
\documentclass{article}
\usepackage{amsmath}
\usepackage{amsfonts}
\begin{document}
Cho biểu thức: $A = \left( \frac{1}{\sqrt{x}-1} - \frac{\sqrt{x}}{x-1} \right) : \frac{1}{\sqrt{x}+1}$.
\begin{enumerate}
\item Tìm điều kiện và rút gọn biểu thức.
\item Tìm các giá trị của $x$ để $A < 0$.
\end{enumerate}
\section*{Lời giải}
\subsection*{a) Tìm điều kiện và rút gọn biểu thức}
\subsubsection*{Điều kiện xác định}
Để biểu thức $A$ có nghĩa, các điều kiện sau phải được thỏa mãn:
\begin{itemize}
\item $x \ge 0$ (để các căn thức có nghĩa).
\item $\sqrt{x}-1 \ne 0 \Rightarrow \sqrt{x} \ne 1 \Rightarrow x \ne 1$.
\item $x-1 \ne 0 \Rightarrow x \ne 1$.
\item $\sqrt{x}+1 \ne 0$, điều này luôn đúng với $x \ge 0$.
\end{itemize}
Vậy, điều kiện xác định của biểu thức là $x \ge 0$ và $x \ne 1$.
\subsubsection*{Rút gọn biểu thức}
Ta có:
$$A = \left( \frac{1}{\sqrt{x}-1} - \frac{\sqrt{x}}{x-1} \right) : \frac{1}{\sqrt{x}+1}$$
Phân tích mẫu số $x-1 = (\sqrt{x}-1)(\sqrt{x}+1)$:
$$A = \left( \frac{1}{\sqrt{x}-1} - \frac{\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)} \right) \cdot (\sqrt{x}+1)$$
$$A = \left( \frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)} - \frac{\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)} \right) \cdot (\sqrt{x}+1)$$
$$A = \frac{\sqrt{x}+1-\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)} \cdot (\sqrt{x}+1)$$
$$A = \frac{1}{(\sqrt{x}-1)(\sqrt
a: ĐKXĐ: x>=0; x<>1
\(A=\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{x-1}\right):\frac{1}{\sqrt{x}+1}\)
\(=\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\left(\sqrt{x}+1\right)\)
\(=\frac{\sqrt{x}+1-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}+1\right)=\frac{1}{\sqrt{x}-1}\)
b: Để A<0 thì \(\frac{1}{\sqrt{x}-1}<0\)
=>\(\sqrt{x}-1<0\)
=>\(\sqrt{x}<1\)
=>0<=x<1