Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Để hai đồ thị song song thì 2m-1=m+2
hay m=3
Bài 5:
\(K=\sqrt{5x-9+6\sqrt{5x-9}+9}+\sqrt{5x-9-6\sqrt{5x-9}+9}\\ K=\sqrt{\left(\sqrt{5x-9}+3\right)^2}+\sqrt{\left(\sqrt{5x-9}-3\right)^2}\\ K=\left|\sqrt{5x-9}+3\right|+\left|3-\sqrt{5x-9}\right|\\ K\ge\left|\sqrt{5x-9}+3+3-\sqrt{5x-9}\right|=6\\ K_{min}=6\Leftrightarrow\left(\sqrt{5x-9}+3\right)\left(3-\sqrt{5x-9}\right)\ge0\\ \Leftrightarrow-3\le\sqrt{5x-9}\le3\\ \Leftrightarrow0\le5x-9\le9\\ \Leftrightarrow9\le5x\le18\\ \Leftrightarrow\dfrac{9}{5}\le x\le\dfrac{18}{5}\)
a: Khi m=1 thì hệ sẽ là x+y=1 và x-y=2
=>x=1,5; y=0,5
b: \(\Leftrightarrow\left\{{}\begin{matrix}x=1-y\\m\left(1-y\right)-y=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y\\m-my-y=2m\end{matrix}\right.\)
=>x=1-y và y(-m-1)=m
=>x=1-y và y=-m/m+1
=>x=1+m/m+1=2m+1/m+1 và y=-m/m+1
Để x,y nguyên thì 2m+1 chia hết cho m+1 và -m chia hết cho m+1
=>\(m+1\in\left\{1;-1\right\}\)
=>\(m\in\left\{0;-2\right\}\)
A=\(\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}\)=\(\dfrac{\sqrt{x}+2}{\sqrt{x}}\)
\(a,A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\\ b,A=\dfrac{2\left(\sqrt{x}+1\right)-3}{\sqrt{x}+1}=2-\dfrac{3}{\sqrt{x}+1}\in Z\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(3\right)=\left\{1;3\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}\in\left\{0;2\right\}\\ \Leftrightarrow x\in\left\{0;4\right\}\left(tm\right)\)
a) \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)
\(\Rightarrow A=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{\left(2x-2\sqrt{x}\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
Gọi chiều rộng là x
Chiều dài là 17-x
Theo đề, ta có: \(\left(x+2\right)\left(20-x\right)=x\left(17-x\right)+45\)
\(\Leftrightarrow20x-x^2+40-2x=17x-x^2+45\)
=>18x+40=17x+45
=>x=5
Vậy: Chiều rộng là 5m
Chiều dài là 12m
1) Phương trình đó có vô số nghiệm khi \(\hept{\begin{cases}m^2-1=0\\m+1=0\end{cases}}\Leftrightarrow m=-1\)
\(\Rightarrow\)Chọn A
2) Phương trình đó có nghiệm duy nhất khi \(m^2-1\ne0\Leftrightarrow m\ne\pm1\)
\(\Rightarrow\)Chọn D.