Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$=11(\frac{13}{161}+\frac{4}{203}-\frac{7}{413}):[5(\frac{13}{69}+\frac{4}{87}-\frac{7}{177})]$
$=11.\frac{3}{7}(\frac{13}{69}+\frac{4}{87}-\frac{7}{177}):[5(\frac{13}{69}+\frac{4}{87}-\frac{7}{177})]$
$=11.\frac{3}{7}:5=\frac{33}{35}$
Anh bạn à sống đẹp lên
Đấy là bài kiểm tra lên còn cái nịt nhá
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
b) Xét ΔABC có AB<AC<BC(3cm<4cm<5cm)
mà góc đối diện với cạnh AB là \(\widehat{ACB}\)
và góc đối diện với cạnh AC là \(\widehat{ABC}\)
và góc đối diện với cạnh BC là \(\widehat{BAC}\)
nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)
Xét ΔABC có
HB là hình chiếu của AB trên BC
HC là hình chiếu của AC trên BC
AB<AC
Do đó: HB<HC
c) Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD(gt)
Do đó: ΔCAB=ΔCAD(hai cạnh góc vuông)
Suy ra: CB=CD(hai cạnh tương ứng)
Xét ΔCBD có CB=CD(cmt)
nên ΔCBD cân tại C(Định nghĩa tam giác cân)
\(a//b//c\)
\(=>\angle\left(A1\right)+\angle\left(B2\right)=180^o\)(2 góc ở vị trí trong cùng phía)
\(=>\angle\left(B2\right)=180^0-140^0=40^o\)
có \(\angle\left(B3\right)+\angle\left(B2\right)=180^o\left(ke-bu\right)\)
\(=>\angle\left(B3\right)=180^0-40^0=140^o\)
b, \(\angle\left(B2\right)+\angle\left(B1\right)=180^o\left(ke-bu\right)\)
\(=>\angle\left(B1\right)=180^o-40^o=140^o\)
\(b//c=>\angle\left(B1\right)=\angle\left(C1\right)=140^o\)(2 góc đồng vị)
\(=>\angle\left(C4\right)+\angle\left(C1\right)=180^o\left(ke-bu\right)=>\angle\left(C4\right)=180^o-140^0=40^o\)
Giải:
Ta có: a//b//ca//b//c
=>∠(A1)+∠(B2)=180o=>∠(A1)+∠(B2)=180o(2 góc ở vị trí trong cùng phía)
=>∠(B2)=1800−1400=40o=>∠(B2)=1800−1400=40o
có ∠(B3)+∠(B2)=180o(ke−bu)∠(B3)+∠(B2)=180o(ke−bu)
=>∠(B3)=1800−400=140o=>∠(B3)=1800−400=140o
b, ∠(B2)+∠(B1)=180o(ke−bu)∠(B2)+∠(B1)=180o(ke−bu)
=>∠(B1)=180o−40o=140o=>∠(B1)=180o−40o=140o
b//c=>∠(B1)=∠(C1)=140ob//c=>∠(B1)=∠(C1)=140o(2 góc đồng vị)
=>∠(C4)+∠(C1)=180o(ke−bu)=>∠(C4)=180o−1400=40o
Câu 8:
a. Với $x,y$ là số nguyên thì $x, y-3$ cũng là số nguyên. Mà $x(y-3)=15$ nên ta có các TH:
TH1: $x=1, y-3=15\Rightarrow x=1; y=18$ (tm)
TH2: $x=-1, y-3=-15\Rightarrow x=-1; y=-12$ (tm)
TH3: $x=15; y-3=1\Rightarrow x=15; y=4$ (tm)
TH4: $x=-15; y-3=-1\Rightarrow x=-15; y=2$ (tm)
TH5: $x=3, y-3=5\Rightarrow x=3; y=8$ (tm)
TH6: $x=-3; y-3=-5\Rightarrow x=-3; y=-2$ (tm)
TH7: $x=5; y-3=3\Rightarrow x=5; y=6$ (tm)
TH8: $x=-5; y-3=-3\Rightarrow x=-5; y=0$ (tm)
Câu 8:
b.
$xy-2y+3(x-2)=7$
$\Rightarrow y(x-2)+3(x-2)=7$
$\Rightarrow (x-2)(y+3)=7$
Do $x,y$ nguyên nên $x-2, y+3$ nguyên. Mà tích của chúng bằng $7$ nên ta có các TH sau:
TH1: $x-2=1, y+3=7\Rightarrow x=3; y=4$ (tm)
TH2: $x-2=-1; y+3=-7\Rightarrow x=1; y=-10$ (tm)
TH3: $x-2=7, y+3=1\Rightarrow x=9; y=-2$ (tm)
TH4: $x-2=-7; y+3=-1\Rightarrow x=-5; y=-4$ (tm)
Các số được điền vào các ô theo thứ tự từ trái sang phải là:
-1; - \(\dfrac{1}{3}\); \(\dfrac{2}{3}\); \(\dfrac{4}{3}\)
Bó tay
het cach noi loi luon