Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\widehat{OAB}=\widehat{ODC}\left(AB\text{//}CD\right)\\\widehat{OBA}=\widehat{OCD}\left(AB\text{//}CD\right)\\AB=CD\end{matrix}\right.\Rightarrow\Delta OAB=\Delta OCD\left(g.c.g\right)\\ \Rightarrow OA=OD;OB=OC\)
b4: a đúng ; b sai ; c đúng
b5:
(viết B2 ở dưới B1 cho mình nha)
có a⊥b;b⊥c => a // b
Có ∠A1 = ∠B2 (t/c hai đường thẳng song song)
=> ∠B2 = 115o
Mà ∠B1 + ∠B2 = 180o
=> ∠B1 = 180o - ∠B2
= 180o - 115o
=> ∠B1 = 65o
\(ĐK:x\ge-3\\ PT\Leftrightarrow\sqrt{x-3}=2\Leftrightarrow x-3=4\Leftrightarrow x=7\left(tm\right)\)
1: A=-1/2*xy^3*4x^2y^2=-2x^3y^5
Bậc là 8
Phần biến là x^3;y^5
Hệ số là -2
2:
a: P(x)=3x+4x^4-2x^3+4x^2-x^4-6
=3x^4-2x^3+4x^2+3x-6
Q(x)=2x^4+4x^2-2x^3+x^4+3
=3x^4-2x^3+4x^2+3
b: A(x)=P(x)-Q(x)
=3x^4-2x^3+4x^2+3x-6-3x^4+2x^3-4x^2-3
=3x-9
A(x)=0
=>3x-9=0
=>x=3
Bài 7:
Ta thấy: $\widehat{xOy}+\widehat{yOx'}=\widehat{xOx'}=180^0$
$\widehat{xOy}-\widehat{yOx'}=30^0$
$\Rightarrow \widehat{yOx'}=\frac{180^0-30^0}{2}=75^0$
$\widehat{xOy'}=\widehat{yOx'}=75^0$ (hai góc đối đỉnh)
Bài 8:
$\widehat{AOC}+\widehat{BOD}=140^0$
$\widehat{AOC}=\widehat{BOD}$ (hai góc đối đỉnh)
$\Rightarrow \widehat{AOC}=\widehat{BOD}=\frac{140^0}{2}=70^0$
$\widehat{COB}=180^0-\widehat{AOC}=180^0-70^0=110^0$
$\widehat{DOA}=\widehat{COB}=110^0$ (hai góc đối đỉnh)