K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cách 1: Nhân đa thức theo phương pháp phân phối

  1. Nhân từng số hạng của đa thức thứ nhất với từng số hạng của đa thức thứ hai:
    • x³(x - 2) = x⁴ - 2x³
    • -x²(x - 2) = -x³ + 2x²
    • x(x - 2) = x² - 2x
    • -1(x - 2) = -x + 2
  2. Cộng các kết quả lại với nhau:
    • (x⁴ - 2x³) + (-x³ + 2x²) + (x² - 2x) + (-x + 2)
  3. Kết hợp các số hạng đồng dạng:
    • x⁴ - 3x³ + 3x² - 3x + 2

Cách 2: Nhân đa thức theo cột dọc

  1. Viết hai đa thức theo cột dọc, sắp xếp các số hạng theo lũy thừa giảm dần của x:
    x³ - x² + x - 1
    x - 2
    --------------------
    
  2. Nhân đa thức thứ nhất với -2, viết kết quả xuống dưới:
    x³ - x² + x - 1
    x - 2
    --------------------
    -2x³ + 2x² - 2x + 2
    
  3. Nhân đa thức thứ nhất với x, viết kết quả xuống dưới, lùi sang trái một cột:
    x³ - x² + x - 1
    x - 2
    --------------------
    -2x³ + 2x² - 2x + 2
    x⁴ - x³ + x² - x
    
  4. Cộng các kết quả theo cột dọc:
    x³ - x² + x - 1
    x - 2
    --------------------
    -2x³ + 2x² - 2x + 2
    x⁴ - x³ + x² - x
    --------------------
    x⁴ - 3x³ + 3x² - 3x + 2
    

Vậy, (x³ - x² + x - 1)(x - 2) = x⁴ - 3x³ + 3x² - 3x + 2.

Mình cảm ơn bạn nhé!



25 tháng 9 2020

C với D mình làm sau vì nó phức tạp hơn ... E với F trước nhé

E = | 3x + 1 | + 2| x - y | + 1

\(\hept{\begin{cases}\left|3x+1\right|\ge0\\2\left|x-y\right|\ge0\end{cases}\forall}x,y\Rightarrow\left|3x+1\right|+2\left|x-y\right|+1\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+1=0\\x-y=0\end{cases}}\Leftrightarrow x=y=-\frac{1}{3}\)

=> MinE = 1 <=> x = y = -1/3

F = 5| x - 1 | + 1/2| 2x + y | + 2020

\(\hept{\begin{cases}5\left|x-1\right|\ge0\\\frac{1}{2}\left|2x+y\right|\ge0\end{cases}\forall}x,y\Rightarrow5\left|x-1\right|+\frac{1}{2}\left|2x+y\right|+2020\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

=> MinF = 2020 <=> x = 1 ; y = -2

25 tháng 9 2020

C = 2| x - 1 | + | 2x + 3 | - 2020

= | 2x - 2 | + | 2x + 3 | - 2020

= | 2x - 2 | + | -( 2x + 3 ) | - 2020

= | 2x - 2 | + | -2x - 3 | - 2020

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

C = | 2x - 2 | + | -2x - 3 | - 2020 ≥ | 2x - 2 - 2x - 3 | - 2020 = | -5 | - 2020 = 5 - 2020 = -2015

Dấu "=" xảy ra khi ab ≥ 0

=> ( 2x - 2 )( -2x - 3 ) ≥ 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}2x-2\ge0\\-2x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge2\\-2x\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le-\frac{3}{2}\end{cases}}\)( loại )

2. \(\hept{\begin{cases}2x-2\le0\\-2x-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le2\\-2x\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-\frac{3}{2}\end{cases}}\Leftrightarrow-\frac{3}{2}\le x\le1\)

=> MinC = -2015 <=> \(-\frac{3}{2}\le x\le1\)

D = | 3 - 2x | + 2| 1 - x | + 1/2

= | 3 - 2x | + | 2 - 2x | + 1/2

= | -( 3 - 2x ) | + | 2 - 2x | + 1/2

= | 2x - 3 | + | 2 - 2x | + 1/2

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

D = | 2x - 3 | + | 2 - 2x | + 1/2 ≥ | 2x - 3 + 2 - 2x | + 1/2 = | -1 | + 1/2 = 1 + 1/2 = 3/2

Dấu "=" xảy ra khi ab ≥ 0

=> ( 2x - 3 )( 2 - 2x ) ≥ 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}2x-3\ge0\\2-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge3\\-2x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)( loại )

2. \(\hept{\begin{cases}2x-3\le0\\2-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le3\\-2x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge1\end{cases}}\Leftrightarrow1\le x\le\frac{3}{2}\)

=> MinD = 3/2 <=> \(1\le x\le\frac{3}{2}\)

14 tháng 6 2016

a) Điều kiện: \(x\ne-5\)

  • Với x<-5 thì: x+3 <0; x+5<0 nên: \(\frac{x+3}{x+5}>0\)Loại.
  • Với x>=-3 thì x+3>=0; x+5 >0 nên \(\frac{x+3}{x+5}\ge0\)Loại.
  • Với -5<x<-3 thì x+3 <0; x+5>0 nên: \(\frac{x+3}{x+5}< 0\)TM đề bài.

Nghiệm của BPT là -5 <x <-3.

b) Tương tự, nghiệm của BPT là: \(\orbr{\begin{cases}x< -1\\x>3\end{cases}}\)

14 tháng 6 2016

Mà em mới lớp 7 à nên k biết nghiệm là gì hết á, chị có cách nào khác k ạ???

11 tháng 2 2021

\(xy=\frac{1}{t}.txy\le\frac{t^2x^2+y^2}{2t}=\frac{\left(3+\sqrt{5}\right)x^2+y^2}{1+\sqrt{5}}\)\(t^2=\frac{3+\sqrt{5}}{2}\)

\(\frac{2\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\left(3+\sqrt{5}\right)\left(2x^2+y^2+z^2+1\right)}\)

\(K=\frac{x^2+y^2+z^2+1}{xy+yz+z}=\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{2.\frac{1+\sqrt{5}}{2}x.y+\left(1+\sqrt{5}\right)yz+2.\frac{1+\sqrt{5}}{2}.z}\)

\(\ge\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\frac{3+\sqrt{5}}{2}x^2+y^2+\frac{1+\sqrt{5}}{2}\left(y^2+z^2\right)+z^2+\frac{3+\sqrt{5}}{2}}=\frac{1+\sqrt{5}}{\frac{3+\sqrt{5}}{2}}=\sqrt{5}-1=k\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=1\\y=\frac{1+\sqrt{5}}{2}\\z=\frac{1+\sqrt{5}}{2}\end{cases}}\)

\(M=\frac{x^2+y^2+z^2+1}{xy+y+z}=\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{2.x.\frac{\sqrt{5}-1}{2}y+\left(\sqrt{5}-1\right)y+2.\frac{\sqrt{5}-1}{2}.z}\)

\(\ge\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{x^2+\frac{3-\sqrt{5}}{2}y^2+\frac{\sqrt{5}-1}{2}\left(y^2+1\right)+\frac{3-\sqrt{5}}{2}+z^2}=\sqrt{5}-1=m\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\y=1\\z=\frac{-1+\sqrt{5}}{2}\end{cases}}\)

\(km+k+m=4\)

11 tháng 2 2021

2 dòng đầu sai nhưng quên xoá :) bỏ đi nhé 

18 tháng 4 2016

Ta có:

\(\left|6+x\right|\ge0\) với V x

\(\left(3+y\right)^2\ge0\) với V y

\(\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\) với V x,y

Dấu bằng xảy ra khi \(\left|6+x\right|=0\) và \(\left(3+y\right)^2=0\)

\(\Rightarrow6+x=0;3+y=0\)

\(\Rightarrow x=-6;y=-3\)

5 tháng 11 2017

Ví dụ : Tìm tập hợp các ước của 24

Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }

Ta có thể tìm các ước của a bằng cách lần lượt chia a cho

các số tự nhiên từ 1 đến a để xét xem a chia hết cho những

số nào ,khi đó các số ấy là ước của a

3 tháng 3 2017

a, A lớn nhất khi 7x la nguyên dương nho nhất

\(\Rightarrow7x=1\)

\(\Rightarrow x=\frac{1}{7}\)

\(b,B=\frac{10+4-x}{4-x}\)

\(B=\frac{10}{4-x}+1\)

b lon nhat khi 4-xla nguyen duong nho nhat

\(\Rightarrow4-x=1\)

\(\Rightarrow x=4-1=3\)

\(c,C=\frac{27-2x}{12-x}=\frac{3+24-2x}{12-x}=\frac{3}{12-x}+2\)

c lon nhat khi 12-x la nguyen duong nho nhat

\(\Rightarrow12-x=1\Rightarrow x=11\)

3 tháng 3 2017

a)x=1

b)x=3

c)x=11

10 tháng 7 2017

Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)

\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)

Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)

      \(\left|x-\frac{3}{7}\right|\ge0\forall x\)

Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)

30 tháng 12 2018

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\)

Dễ thấy: \(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\ne0\Rightarrow x+2004=0\Leftrightarrow x=-2014\)

30 tháng 12 2018

x = -2014

ti-ck nha

.........

1 tháng 8 2019

\(\left|x\right|=7\)

\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)

Vậy \(x\in\left\{\pm7\right\}\)

1 tháng 8 2019

\(\left|x\right|=0\)

\(\Rightarrow x=0\)

Vậy x = 0