Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(1+a\ge b+c\)
Ta có \(1+a^3=b^3+c^3\)
\(\Leftrightarrow\left(1+a\right)\left(a^2-a+1\right)=\left(b+c\right)\left(b^2-bc+c^2\right)\)
\(\Leftrightarrow\frac{a^2-a+1}{b^2-bc+c^2}=\frac{b+c}{1+a}\le1\)
\(\Rightarrow a^2-a+1\le b^2-bc+c^2\)
\(\Leftrightarrow\left(a+1\right)^2-3a\le\left(b+c\right)^2-3bc\)(Vô lí vì giả sử a+1 > b+c và giả thiết a<bc)
Vậy điều giả sử là sai nên ta có dpcm
+ \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\Rightarrow\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)\) \(\Rightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)
Dấu "=" \(\Leftrightarrow b=c\)
+ Tương tự : \(\frac{1}{1+b}\ge2\sqrt{\frac{ca}{\left(1+c\right)\left(1+a\right)}}\) Dấu "=" \(\Leftrightarrow c=a\)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\) Dấu "=" \(\Leftrightarrow a=b\)
Do đó \(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}}=\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\frac{1}{8}\) Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{2}\)