Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(M\in d\) nên M(1+2t; 1-t ; t)
MA+MB= \(\sqrt{4t^2+\left(t-1\right)^2+\left(t+1\right)^2}+\sqrt{\left(2t-1\right)^2+t^2+\left(t-1\right)^2}\)
\(=\sqrt{6t^2+2}+\sqrt{6t^2-6t+2}=\sqrt{6t^2+2+}\sqrt{6.\left(t-\dfrac{1}{2}\right)^2+\dfrac{1}{2}}\)
Chọn \(\overset{r}{u}=\left(\sqrt{6t};\sqrt{2}\right);\overset{r}{v}=\left(\sqrt{6}.\left(\dfrac{1}{2}-t\right);\dfrac{1}{\sqrt{2}}\right)\)
\(\Rightarrow\overset{r}{u}+\overset{r}{v}=\left(\dfrac{\sqrt{6}}{2};\dfrac{3}{\sqrt{2}}\right)\) , Ta có :
MA+MB=\(\left|\overset{r}{u}\right|+\left|\overset{r}{v}\right|\ge\left|\overset{r}{u}+\overset{r}{v}\right|=\sqrt{\dfrac{6}{4}+\dfrac{9}{2}}=\sqrt{6}\)
Dấu đẳng thức xảy ra <=> \(\overset{r}{u};\overset{r}{v}\) cùng hướng
\(\Leftrightarrow\dfrac{\sqrt{6t}}{\sqrt{6}\left(\dfrac{1}{2}-t\right)}=\dfrac{\sqrt{2}}{\dfrac{1}{\sqrt{2}}}\Leftrightarrow1=1-2t\)
\(\Leftrightarrow t=\dfrac{1}{3}\) . Vậy MA+MB nhỏ nhất
\(\Leftrightarrow M\left(\dfrac{5}{3},\dfrac{2}{3};\dfrac{1}{3}\right)\)
Vậy chọn D
\(log_{\sqrt{x}}y=\dfrac{2y}{5}\Rightarrow2log_xy=\dfrac{2y}{5}\) \(\Rightarrow log_xy=\dfrac{y}{5}\)
\(log_{\sqrt[3]{5}}x=\dfrac{15}{y}\Rightarrow3log_5x=\dfrac{15}{y}\Rightarrow log_5x=\dfrac{5}{y}\)
\(\Rightarrow log_xy=\dfrac{1}{log_5x}=log_x5\Rightarrow y=5\)
\(\Rightarrow log_5x=\dfrac{5}{5}=1\Rightarrow x=5\)
\(\Rightarrow x^2+y^2=25+25=50\)
3. Đồng biến
5. \(n.x^{n-1}\) và \(\dfrac{1}{2\sqrt{x}}\)
6. Dương
Do thiết diện qua trục là hình vuông \(\Rightarrow h=2R\)
Thể tích khối trụ: \(V'=\pi R^2h=2\pi R^3\)
Độ dài cạnh hình vuông nội tiếp trong đường tròn bán kính R: \(a=R\sqrt{2}\)
\(\Rightarrow\)Thể tích khối lăng trụ tứ giác đều:
\(V=a^2.h=2R^2.2R=4R^3\)
\(\Rightarrow\dfrac{V}{V'}=\dfrac{\pi}{2}\)
Tịnh tiến đồ thị vế phía trái \(x_1+1\) đơn vị độ dài (trung điểm \(x_1;x_2\) trùng gốc tọa độ) \(\Rightarrow\) hai cực trị của hàm số lúc này là -1 và 1
\(\Rightarrow y'=0\) có 2 nghiệm \(\pm1\Rightarrow f'\left(x\right)=a\left(x^2-1\right)\Rightarrow f\left(x\right)=\dfrac{a}{3}\left(x^3-3x\right)\)
\(\int\limits^0_{-1}f\left(x\right)dx=\dfrac{5}{4}\Rightarrow\int\limits^0_{-1}\dfrac{a}{3}\left(x^3-3x\right)=\dfrac{5}{4}\Rightarrow\dfrac{a}{3}.\dfrac{5}{4}=\dfrac{5}{4}\Rightarrow a=3\)
\(\Rightarrow f\left(x\right)=x^3-3x\Rightarrow L=\lim\limits_{x\rightarrow-1}\dfrac{x^3-3x-2}{\left(x+1\right)^2}=\lim\limits_{x\rightarrow-1}\left(x-2\right)=-3\)