K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2021

ko đọc đc chữ

10 tháng 12 2021

a: BH=4,8cm

Sửa đề: P là giao điểm của EN và FM

Gọi O là trung điểm của EF

=>O là tâm đường tròn đường kính EF

Xét (O) có

ΔEMF nội tiếp

EF là đường kính

Do đó: ΔEMF vuông tại M

=>FM\(\perp\)EK tại M

Xét (O) có

ΔENF nội tiếp

EF là đường kính

Do đó: ΔENF vuông tại N

=>EN\(\perp\)FK tại N

Xét tứ giác KMPN có \(\widehat{KMP}+\widehat{KNP}=90^0+90^0=180^0\)

nên KMPN là tứ giác nội tiếp

=>K,M,P,N cùng thuộc một đường tròn

30 tháng 5 2021

 B=\(\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\)+\(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+1\right)\left(x\ge0,x\ne1\right)\)

\(B=\)\(\left[\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right]+\left[\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+1\right]\)

\(B=\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=2\sqrt{a}+2\)

b, ĐỂ B=\(\sqrt{a}+1< =>2\sqrt{a}+2=\sqrt{a}+1\)

<=>\(\sqrt{a}=-1\)(vô lí)

vậy a\(\in\phi\)

5 tháng 8 2021

Khó quá trời quá đất,ai biết làm ko?

5 tháng 7 2016

m-2m-n+1 = (m-2m+1)-n = (m-1)-n

8 tháng 6 2016

Kẻ BK là đường cao của hình thang => BK = 12 cm
Từ B, kẻ BE//AC => ABEC là hình bình hành và BD vuông góc với BE 
Áp dụng hệ thức lượng trong tam giác BDE vuông ở B :1/BD2 + 1/BE2 = 1/BK2 
=> BE = 20 cm 
Theo định lý Py-ta-go, BD2 +BE2 =DE2 => DE = 25 cm
Lại có DE = DC+CE=DC+AB 
=> SABCD =\(\frac{\left(DC+AB\right).BK}{2}=\frac{25.12}{2}=150\) (cm2)

21 tháng 12 2021

Bài 4:

a: AC=8cm

21 tháng 12 2021

wow :)

15 tháng 10 2021

a: Ta có: \(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{x+2}{x\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}+1-x-2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{-1}{x-\sqrt{x}+1}\)

20 tháng 7 2019
https://i.imgur.com/VKXWnt6.jpg
NV
28 tháng 10 2020

Bài 1 chắc ai cũng biết

Bài 2 bạn tham khảo trang 40 trong tài liệu này:

Câu hỏi của Nguyễn Việt Lâm - Toán lớp 6 | Học trực tuyến

Ví dụ câu b:

\(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)

\(=\sqrt[3]{27+3.9.\sqrt{2}+3.2.9+2\sqrt{2}}+\sqrt[3]{27-3.9.\sqrt{2}+3.2.9-2\sqrt{2}}\)

\(=\sqrt[3]{\left(3+\sqrt{2}\right)^3}+\sqrt[3]{\left(3-\sqrt{2}\right)^3}\)

\(=6\)

Các câu khác tách tương tự

Bài 3 để ý 2 mẫu số đều có dạng:

\(a^2\pm ab+b^2\)

Do đó nhân cả tử và mẫu với \(a\mp b\) để đưa về hằng đẳng thức

\(\frac{1}{\sqrt[3]{4^2}+\sqrt[3]{4.3}+\sqrt[3]{3^2}}=\frac{\sqrt[3]{4}-\sqrt[3]{3}}{\left(\sqrt[3]{4}-\sqrt[3]{3}\right)\left(\sqrt[3]{4^2}+\sqrt[3]{4.3}+\sqrt[3]{3^2}\right)}\)

\(=\frac{\sqrt[3]{4}-\sqrt[3]{3}}{\left(\sqrt[3]{4}\right)^3-\left(\sqrt[3]{3}\right)^3}=\sqrt[3]{4}-\sqrt[3]{3}\)

\(\frac{1}{\sqrt[3]{3^2}-\sqrt[3]{3.2}+\sqrt[3]{2^2}}=\frac{\sqrt[3]{3}+\sqrt[3]{2}}{\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\left(\sqrt[3]{3^2}-\sqrt[3]{3.2}+\sqrt[3]{2^2}\right)}\)

\(=\frac{\sqrt[3]{3}+\sqrt[3]{2}}{\left(\sqrt[3]{3}\right)^3+\left(\sqrt[3]{2}\right)^3}=\frac{\sqrt[3]{3}+\sqrt[3]{2}}{5}\)

28 tháng 10 2020
https://i.imgur.com/J9e0f1y.jpg