K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2021
22 tháng 11 2021

Bạn ơi câu c bài 1 mà

30 tháng 10 2023

loading...  loading...  loading...  

21 tháng 8 2023

Bài 4:

a) Thay x=49 vào B ta có:

\(B=\dfrac{1-\sqrt{49}}{1+\sqrt{49}}=-\dfrac{3}{4}\)

b) \(A=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)

\(A=\left[\dfrac{15-\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right]\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(A=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(A=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(A=\dfrac{1}{\sqrt{x}-5}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(A=\dfrac{1}{\sqrt{x}+1}\)

c) Ta có: 

\(M=A-B=\dfrac{1}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}+1}\)

\(M=\dfrac{1-1+\sqrt{x}}{\sqrt{x}+1}\)

\(M=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(M=\dfrac{\sqrt{x}+1-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}=1-\dfrac{1}{\sqrt{x}+1}\)

Mà M nguyên khi:

\(1\) ⋮ \(\sqrt{x}+1\)

\(\Rightarrow\sqrt{x}+1\in\left\{1;-1\right\}\)

Mà: \(\sqrt{x}+1\ge1\)

\(\Rightarrow\sqrt{x}+1=1\)

\(\Rightarrow\sqrt{x}=0\)

\(\Rightarrow x=0\left(tm\right)\)

Vậy M nguyên khi x=0

20 tháng 10 2021

Bài 6: 

a: Ta có: \(E=\dfrac{1}{\sqrt{x}+1}:\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\dfrac{1}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

14 tháng 10 2021

Bài 4: 

b: Xét ΔABK vuông tại A có AD là đường cao ứng với cạnh huyền BK

nên \(BD\cdot BK=BA^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)

14 tháng 10 2021

em cảm ơn ạ nhưng mà e cần CM câu c chứ ko phải là câu b ạ

12 tháng 9 2021

1.

d, ĐK: \(x\ge-5\)

\(x-2-4\sqrt{x+5}=-10\)

\(\Leftrightarrow x+5-4\sqrt{x+5}+3=0\)

\(\Leftrightarrow\left(\sqrt{x+5}-1\right)\left(\sqrt{x+5}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1\\\sqrt{x+5}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=1\\x+5=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)

\(\Leftrightarrow x=\pm4\left(tm\right)\)

12 tháng 9 2021

2.

ĐK: \(x\in R\)

\(\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|x+1\right|+\left|x-2\right|=3\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).

\(\left|x+1\right|+\left|x-2\right|=\left|x+1\right|+\left|2-x\right|\ge\left|x+1+2-x\right|=3\)

Đẳng thức xảy ra khi:

\(\left(x+1\right)\left(2-x\right)\ge0\)

\(\Leftrightarrow-1\le x\le2\)

Bài 1: 

c: Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là 

x1=1; \(x2=\dfrac{c}{a}=\dfrac{3\sqrt{2}+1}{1-\sqrt{2}}\)

27 tháng 6 2021

em bị lộn 

chờ em sửa lại nội dung xíubucminh

27 tháng 6 2021

`D=(sqrt{3}.sqrt{5-2sqrt6})/(sqrt3-sqrt2)-1/(2-sqrt3)`

`=(sqrt3*sqrt{3-2sqrt{3}.sqrt2+2})/(sqrt3-sqrt2)-(2+sqrt3)/(4-3)`

`=(sqrt3.sqrt{(sqrt3-sqrt2)^2})/(sqrt3-sqrt2)-2-sqrt3`

`=sqrt3-2-sqrt3=-2`

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB, ta được:

\(AM\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:

\(AN\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)