K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 9 2021

3.

Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

B đúng

4.

Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(0;1\right)\)

A đúng

1.

B sai (thiếu điều kiện \(f'\left(x\right)=0\) tại hữu hạn điểm)

14 tháng 9 2021

thầy ơi còn câu 9 vs câu 2 s thầy

 

NV
11 tháng 8 2021

\(y'=-3mx^2+2x-3\)

Hàm nghịch biến trên khoảng đã cho khi với mọi \(x\in\left(-3;0\right)\) ta có:

\(-3mx^2+2x-3\le0\)

\(\Leftrightarrow2x-3\le3mx^2\)

\(\Leftrightarrow\dfrac{2x-3}{3x^2}\le m\)

\(\Rightarrow m\ge\max\limits_{\left(-3;0\right)}\left(\dfrac{2x-3}{3x^2}\right)\)

Xét hàm \(f\left(x\right)=\dfrac{2x-3}{3x^2}\Rightarrow f'\left(x\right)=\dfrac{2\left(3-x\right)}{3x^3}< 0;\forall x\in\left(-3;0\right)\)

\(\Rightarrow f\left(x\right)>f\left(-3\right)=-\dfrac{1}{3}\)

\(\Rightarrow m\ge-\dfrac{1}{3}\)

CHọn B

10 tháng 2 2022

Ta có: \(\int\dfrac{xdx}{x^2+3}\)

Đặt \(u=x^2+3\left(u>0\right)\) 

Có \(du=2xdx\)

\(\Rightarrow\int\dfrac{xdx}{x^2+3}=\)\(\int\dfrac{du}{2u}=\dfrac{1}{2}ln\left(u\right)=\dfrac{1}{2}ln\left(x^2+3\right)\)

10 tháng 2 2022

Cảm ơn bạn nhiều 🥰

NV
18 tháng 4 2021

Đặt \(\int f\left(x\right)dx=F\left(x\right)\Rightarrow\int\limits^{17}_1f\left(x\right)dx=F\left(17\right)-F\left(1\right)\)

Từ giả thiết:

\(2x.f\left(x^2+1\right)+\dfrac{f\left(\sqrt{x}\right)}{2\sqrt{x}}=2lnx\)

Lấy nguyên hàm 2 vế:

\(F\left(x^2+1\right)+F\left(\sqrt{x}\right)=2xlnx-2x+C\)

Thay \(x=4\):

\(F\left(17\right)+F\left(2\right)=16ln2-8+C\) (1)

Thay \(x=1\):

\(F\left(2\right)+F\left(1\right)=-2+C\) (2)

Trừ vế cho vế (1) cho (2):

\(F\left(17\right)-F\left(1\right)=16ln2-6\)

Vậy \(\int\limits^{17}_1f\left(x\right)dx=16ln2-6\)

19 tháng 4 2021

Em cảm ơn thầy nhiều ạ 💕💕

30 tháng 1 2016

bạn chỉ cần tách x4-1  ​thành (x2-1)(x2+1),rồi đặt x2=t là ok

30 tháng 1 2016

\(\frac{1}{12}\)

4 tháng 2 2016

đặt x =tant 

là xong trong 1 nốt nhạc

4 tháng 2 2016

 

Tách sin^2 = 1-cos^2=(1-cos)(1+cos)

 

Dùng phương pháp đồng nhất hệ số, đưa về thế này

1/cos +1/2(1-cos) -1/2(1+cos)

 

25 tháng 9 2021

undefinedundefined

Bạn tham khảo nhé :)) Cái đoạn tính Lim là mình sử dụng máy tính cầm tay cho nhanh nên có thể nó hơi tắt 

NV
10 tháng 8 2021

Từ đồ thị ta thấy \(f'\left(x\right)>0\) trên các khoảng \(\left(-1;1\right)\) và \(\left(3;+\infty\right)\)

\(f'\left(x\right)< 0\) trên \(\left(-\infty;-1\right)\) và \(\left(1;3\right)\)

\(\Rightarrow\) Hàm nghịch biến trên (1;3)

Chọn B