\(\frac{n^3-1}{n^5+n+1}\) không tối giản

 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

\(\frac{n^3-1}{n^5+n+1}\)

\(=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^5-n^2+n^2+n+1}\)

\(=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n^3-1\right)+n^2+n+1}\)

\(=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)

\(=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left[n^2\left(n-1\right)+1\right]}\)

Vì n2+n+1 chia hết cho chính nó

=> đpcm

9 tháng 11 2016

thanks bn nhiềuhiha

9 tháng 11 2016

a)Gọi \(UCLN\left(6n+1;8n+1\right)=d\)

Ta có:

\(\left[4\left(6n+1\right)\right]-\left[3\left(8n+1\right)\right]⋮d\)

\(\Rightarrow\left[24n+4\right]-\left[24n+3\right]⋮d\)

\(\Rightarrow1⋮d\).Suy ra 24n+4 và 24n+3 là 2 số nguyên tố cùng nhau

Vậy \(A=\frac{6n+1}{8n+1}\) là phân số tối giản

b)tương tự

10 tháng 11 2016

tks bn hihahihi

22 tháng 11 2016

gọi (6n+1;8n+1)=d

 =>6n+1 chia hết cho d và 8n+1 chia hết cho d

=>4(6n+1) chia hết cho d và 3(8n+1) chia hết cho d

=>24n+4 chia hết cho d và 24n+3 chia hết cho d

=>(24n+4)-(24n+3) chia hết cho d

=>1 chia hết cho d hay d=1

Vậy (6n+1;8n+1)=1 => B tối giản

22 tháng 11 2016

\(A=\frac{n^3-1}{n^5+n+1}=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^5-n^2+\left(n^2+n+1\right)}=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n^3-1\right)+\left(n^2+n+1\right)}\)

\(=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left(n^3-n^2+1\right)}\)

bn xem lại đề xemđề có cho n nguyên dương ko nhé,chắc phải có thêm đk đó nữa mới CM n2+n+1 > 1 nên A không tối giản

bạn phải cm ƯCLNcủa tử và mẫu là 1

24 tháng 6 2019

bạn giải hộ mình với

4 tháng 12 2018

Nó tối giản mà bạn.

29 tháng 8 2017

Ta có :

\(\frac{n^7+n^2+1}{n^8+n+1}=\frac{n^7-n^4+n^4-n+n^2+n+1}{n^8-n^5+n^5-n^2+n^2+n+1}\)

\(=\frac{n^4\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)}{n^5\left(n^3-1\right)+n^2\left(n^3-1\right)+\left(n^2+n+1\right)}\)

\(=\frac{n^4\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}{n^5\left(n-1\right)\left(n^2+n+1\right)+n^2\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}\)

\(=\frac{\left(n^2+n+1\right)\left(n^5-n^4+n^2-n+1\right)}{\left(n^2+n+1\right)\left(n^6-n^5+n^3-n+1\right)}\)

\(=\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n+1}\)

Do phân số \(\frac{n^7+n^2+1}{n^8+n+1}\) còn thu gọi được thành \(\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n+1}\) nên nó chưa tối giản (đpcm)