Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
ĐK: \(x+y\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)
Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)
\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)
\(\Leftrightarrow a^3-ab-a+b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)
Thay (3) vào (2) ta được
\(x^2-y=1\Leftrightarrow y=x^2-1\)
\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)
Giải (4)
Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)
do đó (4) không xảy ra
Vậy..........
Trừ vế theo vế hai phương trình trên ta có phương trình:
\(y^2-x^2=x^3-y^3-4x^2+4y^2+3x-3y\)
\(\Leftrightarrow\left(x^3-y^3\right)-3\left(x^2-y^2\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3x-3y+3\right)=0\)(1)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2-3x-3y+3=0\end{cases}}\)
+)Với \(x-y=0\Leftrightarrow x=y\)
Thế vào 1 trong 2 phương trình ba đầu:
Ta có: \(x^2=x^3-4x^2+3x\Leftrightarrow x^3-5x^2+3x=0\Leftrightarrow x\left(x^2-5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5+\sqrt{13}}{2}hoacx=\frac{5-\sqrt{13}}{2}\end{cases}}\)
=> y tự làm nhé
+) Với \(x^2+xy+y^2-3x-3y+3=0\)
Ta có: \(x^2+xy+y^2-3x-3y+3=\left(x^2+2.x.\frac{y}{2}+\frac{y^2}{4}\right)-3\left(x+\frac{y}{2}\right)+\frac{3y^2}{4}-\frac{3y}{2}+3\)
\(=\left(x+\frac{y}{2}\right)^2-2.\left(x+\frac{y}{2}\right).\frac{3}{2}+\frac{9}{4}+3\left(\frac{y^2}{4}-2.\frac{y}{2}.\frac{1}{2}+\frac{1}{4}\right)-\frac{9}{4}-\frac{3}{4}+3\)
\(=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+3\left(\frac{y}{2}-\frac{1}{2}\right)^2\ge0\)
"=" xảy ra khi và chỉ khi : \(\hept{\begin{cases}x+\frac{y}{2}-\frac{3}{2}=0\\\frac{y}{2}-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Thế vào 1 trong hai phương trình ban đầu thấy ko thỏa mãn : 1^2=1^3-4.1^2+3.1 vô lí
Kết luận nghiệm:...
\(\hept{\begin{cases}\sqrt{x}-\sqrt{x-y-1}=1\left(1\right)\\y^2+x+2y\sqrt{x}-y^2x=0\left(2\right)\end{cases}}\)
đk: x>=0 và x>= y+1
ta có \(\left(1\right)\Leftrightarrow\sqrt{x}=1+\sqrt{x-y-1}\)
\(\Leftrightarrow x=1+x-y-1+2\sqrt{x-y-1}\Leftrightarrow2\sqrt{x-y-1}=y\)
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(x-y-1\right)=y^2\end{cases}\Leftrightarrow\hept{\begin{cases}y\ge0\\4x=\left(y+2\right)^2\end{cases}\Leftrightarrow}\hept{\begin{cases}y\ge0\\\left|y+2\right|=2\sqrt{x}\end{cases}\Leftrightarrow}\hept{\begin{cases}y\ge0\\y+2=2\sqrt{x}\end{cases}}}\)
thay vào (2) \(\left(y+\sqrt{x}\right)^2=\left(y\sqrt{x}\right)^2\)
\(\Leftrightarrow y+\sqrt{x}=y\sqrt{x}\)ta được \(y+\frac{y+2}{2}=y\left(\frac{y+2}{2}\right)\)
\(\Leftrightarrow y^2-y-2=0\Leftrightarrow\orbr{\begin{cases}y=-1\left(loai\right)\\y=2\end{cases}}\)
do đó nghiệm hệ \(\hept{\begin{cases}x=4\\y=2\end{cases}}\)
Hệ phương trình trở thành:
\(\hept{\begin{cases}\left(x+y\right)\left(x^2+y^2\right)=5\left(1\right)\\\left(x+y\right)\left(x-y\right)^2=3\left(2\right)\end{cases}}\)
Ta có: x+y khác 0; x-y khác 0
+) Với x =0 thay vào ta có hệ phương trình mới: \(\hept{\begin{cases}y.y^2=5\\y.y^2=3\end{cases}}\) loại
+) Với x khác 0, Đặt y=xt
Chia vế theo vế (1) cho (2), Ta có:
\(\frac{x^2+y^2}{\left(x-y\right)^2}=\frac{5}{3}\Leftrightarrow\frac{x^2+x^2t^2}{\left(x-xt\right)^2}=\frac{5}{3}\)
\(\Leftrightarrow\frac{1+t^2}{\left(1-t\right)^2}=\frac{5}{3}\)
\(\Leftrightarrow3\left(1+t^2\right)=5\left(1-t\right)^2\)
\(\Leftrightarrow2t^2-10t+2=0\Leftrightarrow\orbr{\begin{cases}t=\frac{5+\sqrt{21}}{2}\\t=\frac{5-\sqrt{21}}{2}\end{cases}}\)
Ta có: y=xt thế vào phương trình (1) hoặc (2) ta có phương trình ẩn x. Gợi ý như vậy em làm tiếp nhé! :)