Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này dễ mà bn
Ta có:\(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\left(ĐK:x\ne2;-3\right)\)
\(\Leftrightarrow A=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)
\(\Leftrightarrow A=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow A=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{x+4}{x-2}\)
Nếu \(x^2-9x+14=\left(x-7\right)\left(x-2\right)\ge0\)
\(\Leftrightarrow\)\(x\ge7;\)\(x\le2\)
thì \(\left|x^2-9x+14\right|=x^2-9x+14\)
Khi đó bpt trở thành: \(x^2-9x+14+3x>x^2-4\)
\(\Leftrightarrow\)\(-6x>-18\)
\(\Leftrightarrow\) \(x< 3\)(thỏa mãn)
Nếu \(x^2-9x+14=\left(x-7\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\)\(2< x< 7\)
thì \(\left|x^2-9x+14\right|=-x^2+9x-14\)
Khi đó bpt trở thành: \(-x^2+9x-14+3x>x^2-4\)
\(\Leftrightarrow\)\(-2x^2+12x-10>0\)
\(\Leftrightarrow\) \(x^2-6x+5< 0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-5\right)< 0\)
\(\Leftrightarrow\) \(1< x< 5\) (thỏa mãn)
Vậy...
(x2 + x) (x2 + x + 1) = 6
(x2 + x) (x2 + x + 1) = 2 . 3 = (-2) . (-3)
Vì x2 + x và x2 + x + 1 là 2 số liên tiếp nên x2 + x = 2, x2 + x + 1 = 3 hoặc x2 + x = -3, x2 + x + 1 = -2
=> x2 + x = 2 hoặc x2 + x = -3
Vì x2 + x = x . (x + 1) là tích 2 số liên tiếp nên x2 + x chẵn
=> x . (x + 1) = 2 = 1 x 2
=> x = 1
Vậy x = 1
\(\Leftrightarrow36\left(x+6\right)+36\left(x-6\right)=\dfrac{9}{2}\left(x^2-36\right)\)
\(\Leftrightarrow x^2\cdot\dfrac{9}{2}-162-72x=0\)
\(\Leftrightarrow9x^2-144x-324=0\)
\(\Leftrightarrow x^2-16x-36=0\)
=>(x-18)(x+2)=0
=>x=18 hoặc x=-2
ĐKXĐ:\(x\ne\pm6\)
\(\dfrac{36}{x-6}+\dfrac{36}{x+6}=4,5\\ \Leftrightarrow36\left(\dfrac{1}{x-6}+\dfrac{1}{x+6}\right)=4,5\\ \Leftrightarrow\dfrac{x+6}{\left(x-6\right)\left(x+6\right)}+\dfrac{x-6}{\left(x-6\right)\left(x+6\right)}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{x+6+x-6}{x^2-36}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{2x}{x^2-36}=\dfrac{1}{8}\\ \Leftrightarrow x^2-36=16x\\ \Leftrightarrow x^2-16x-36=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(18x+36\right)=0\\ \Leftrightarrow x\left(x+2\right)-18\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-18\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\left(tm\right)\\x=18\left(tm\right)\end{matrix}\right.\)
\(\dfrac{36}{x+6}+\dfrac{36}{x-6}=4,5\)
\(\Leftrightarrow36\left(x-6\right)+36\left(x+6\right)=4,5\left(x^2-36\right)\)
\(\Leftrightarrow36x-216+36x+216=4,5x^2-162\)
\(\Leftrightarrow-4,5x^2+72x+162=0\)
\(\Leftrightarrow\left(x-18\right)\left(-4,5x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=18\\x=-2\end{matrix}\right.\)
bạn làm rõ hơn ở chỗ này đc ko, mk ko hiểu
⇔−4,5x2+72x+162=0⇔−4,5x2+72x+162=0
⇔(x−18)(−4,5x−9)=0
a) \(\Leftrightarrow\left(-63x^2+78x-15\right)+\left(63x^3+x-20\right)=44\)
\(\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\)
\(\Leftrightarrow79x-35=44\)
\(\Leftrightarrow79x=44+35\)
\(\Leftrightarrow79x=79\)
\(\Leftrightarrow x=1\)
b) \(\Leftrightarrow\left(x^2+3x+2\right).\left(x+5\right)-x^2.\left(x+8\right)=27\)
\(\Leftrightarrow x.\left(x^2+3x+2\right)+5.\left(x^2+3x+2\right)-x^3-8x^2=27\)
\(\Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\)
\(\Leftrightarrow17x+10=27\)
\(\Leftrightarrow17x=17\)
\(\Leftrightarrow x=1\)
b)
\(\left(2x-1\right)^2=25\)
\(\left(2x-1\right)^2=5^2=\left(-5\right)^2\)
TH1: 2x - 1 = 5
=> x = 3
TH2: 2x - 1 = -5
=> x = -2
\(\frac{36}{x+6}+\frac{36}{x-6}=\) \(4,5\)\(\left(ĐKCĐ:x\ne\pm6\right)\)
\(\Leftrightarrow\frac{36\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}+\frac{36\left(x+6\right)}{\left(x+6\right)\left(x-6\right)}\)\(=\frac{4,5\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}\)
\(\Leftrightarrow\frac{36x-216}{\left(x-6\right)\left(x+6\right)}+\frac{36x+216}{\left(x-6\right)\left(x+6\right)}\)\(=\frac{4,5x^2-162}{\left(x-6\right)\left(x+6\right)}\)
\(\Rightarrow36x-216+36x+216=4,5x^2-162\)
( đến đây giải phương trình ra rồi đối chiếu đkxđ là xong )
\(\frac{36}{x+6}+\frac{36}{x-6}=4,5\)
\(\frac{36}{x+6}+\frac{36}{x-6}=\frac{4,5\left(x+6\right)\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}\)
\(DKXD:\hept{\begin{cases}x+6\ne0\\x-6\ne0\\\left(x+6\right)\left(x-6\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-6\\x\ne6\end{cases}}\)
\(\frac{72x}{\left(x+6\right)\left(x-6\right)}=\frac{4,5\left(x+6\right)\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}\)
\(4,5x^2+72x-162=0\)
\(4,5x^2-9x+81x-162=0\)
\(4,5\left(x-2\right)+81\left(x-2\right)=0\)
\(\left(x-2\right)\left(4,5x-81\right)=0\)
\(\left(x-2\right)4,5\left(x-18\right)=0\)
\(\hept{\begin{cases}x-2=0\\x-18=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=18\end{cases}}\)
Ta có: \(\frac{36}{x+6}+\frac{36}{x-6}=\frac{9}{2}\)
ĐKXĐ: \(\left\{\begin{matrix}x\ne-6\\x\ne6\end{matrix}\right.\)
\(\Leftrightarrow36\left(\frac{1}{x+6}+\frac{1}{x-6}\right)=\frac{9}{2}\)
\(\Leftrightarrow36\left(\frac{x-6+x+6}{\left(x+6\right)\left(x-6\right)}\right)=\frac{9}{2}\)
\(\Leftrightarrow36.\frac{2x}{x^2-36}=\frac{9}{2}\)
\(\Leftrightarrow\frac{72x}{x^2-36}=\frac{9}{2}\)
\(\Leftrightarrow72x.2=9.\left(x^2-36\right)\)
\(\Leftrightarrow8x.2=x^2-36\) ( chia cả hai vế cho 9 )
\(\Leftrightarrow16x=x^2-36\)
\(\Leftrightarrow16x-x^2+36=0\)
\(\Leftrightarrow-x^2+16x+36=0\)
\(\Leftrightarrow x^2-16x-36=0\)
\(\Leftrightarrow x^2+2x-18x-36=0\)
\(\Leftrightarrow x\left(x+2\right)-18\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-18\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+2=0\\x-18=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-2\\x=18\end{matrix}\right.\)
Vậy: \(x=-2;18\)
\(\frac{36}{x+6}+\frac{36}{x-6}=4,5\left(đkxđ:x\ne\pm6\right)\)
\(\Leftrightarrow\frac{36\left(x-6\right)+36\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=\frac{4,5\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}\)
\(\Leftrightarrow\frac{36\left(x-6+x+6\right)}{\left(x-6\right)\left(x+6\right)}=\frac{4,5\left(x^2-36\right)}{\left(x-6\right)\left(x+6\right)}\)
\(\Rightarrow36\times2x=4,5\left(x^2-36\right)\)
\(\Leftrightarrow72x=4,5x^2-162\)
\(\Leftrightarrow4,5x^2-72x-162=0\)
\(\Leftrightarrow4,5x^2+9x-81x-162=0\)
\(\Leftrightarrow4,5x\left(x+2\right)-81\left(x+2\right)=0\)
\(\Leftrightarrow\left(4,5x-81\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}4,5x-81=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=18\\x=-2\end{matrix}\right.\left(TMĐKXĐ\right)\)