K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2023

a: Xét tứ giác ABQN có

\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)

=>ABQN là hình chữ nhật

b: Xét ΔCAD có

DN,CH là các đường cao

DN cắt CH tại M

Do đó: M là trực tâm của ΔCAD

=>AM\(\perp\)CD

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔHAB đồng dạng với ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

=>\(HA=\sqrt{HB\cdot HC}\)

 

10 tháng 12 2023

loading...  

a: Ta có: \(25x^2\left(x-y\right)-x+y\)

\(=\left(x-y\right)\left(25x^2-1\right)\)

\(=\left(x-y\right)\left(5x-1\right)\left(5x+1\right)\)

b: Ta có: \(16x^2\left(z^2-y^2\right)-z^2+y^2\)

\(=\left(z^2-y^2\right)\left(16x^2-1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left(4x-1\right)\left(4x+1\right)\)

c: Ta có: \(x^3+x^2y-x^2z-xyz\)

\(=x^2\left(x+y\right)-xz\left(x+y\right)\)

\(=x\left(x+y\right)\left(x-z\right)\)

19 tháng 1 2022

- Đây có phải là toán lớp 8 nữa không vậy :)? Mình học toán nâng cao nhưng chưa bao giờ thấy dạng này :).

19 tháng 1 2022

b1:

do x;y thuộc số nguyên N và x,y\(\ge\)2

=>\(-4xy+1< +7x-7y< 4xy+1\)

\(\Rightarrow4x^2y^2-4xy+1< 4x^2y^2+7x-7y< 4x^2y^2+4xy+1\)

\(\Rightarrow\left(2xy-1\right)^2< 4x^2y^2+7x-7y< \left(2xy+1\right)^2\)

mà \(4x^2y^2+7x-7y\) là số chính phương và 1<2xy-1<2xy-1 nên ta có:

\(4x^2y^2+7x-7y-\left(2xy\right)^2\Leftrightarrow x=y\)

 

5:

\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}>=3\cdot\sqrt[3]{\dfrac{a}{b}\cdot\dfrac{b}{c}\cdot\dfrac{c}{a}}=3\)

a^2+b^2>=2ab

b^2+c^2>=2bc

a^2+c^2>=2ac

=>a^2+b^2+c^2>=ab+bc+ac

=>(ab+bc+ac)/(a^2+b^2+c^2)>=1

=>a/b+b/c+c/a+(ab+ac+bc)/(a^2+b^2+c^2)>=4

10 tháng 10 2017

\(x^3-4x^2+4x-xy^2\)

\(=x\left(x^2-4x+4-y^2\right)\)

\(=x\left[\left(x^2-4x+4\right)-y^2\right]\)

\(=x\left[\left(x-2\right)^2-y^2\right]\)

\(=x\left(x-2-y\right)\left(x-2+y\right)\)

10 tháng 10 2017

x3 - 4x2 + 4x - xy2

= x ( x2 - 4x + 4 - y2 )

= x [ ( x2 - 4x + 22 ) - y2 ]

= x [ ( x - 2 )2 - y2 ]

= x ( x - 2 - y ) ( x - 2 + y )

19 tháng 12 2016

a) = \(x^2-6x+11\)

\(x^2-2.3x+3^2+2\)

\(\left(x-3\right)^2+2\ge2\left(do\left(x-3\right)^2\ge0\right)\)

Vậy min = 2 khi x-3=0<=> x=3

b) = \(-\left(x^2-6x+11\right)\)

\(-\left(x^2-2.x.3+3^2\right)-2\)

\(-2-\left(x-3\right)^2\le-2\left(do\left(x-3\right)^2\ge0\right)\)

Vậy max=-2 khi x-3 =0 <=> x=3

Chắc chắn đúng. mik nhé! Tks banj~~~ (:

19 tháng 12 2016

Dạng bài này phải là dễ, à k phải nói là quá dễ. Do tối rồi nên mình chỉ có thể giải giúp bạn bài tập thôi, còn muốn mình giảng thì nhắn tin riêng cho mình nhé!  :")

A = x^2  -  6x  +  11  =  (x^2  -  6x  +  9 ) + 2 = (x-3)^2  +  2

Vì (x-3)^2  >/= 0 với mọi x nên A=(x-3)^2 +2 >/= 2

Suy ra GTNN của A bằng 2 khi : x - 3 =0 hay x=3

25 tháng 2 2021

\(P=\frac{2bc-2016}{3c-2bc+2016}-\frac{2b}{3-2b+ab}+\frac{4032-3ac}{3ac-4032+2016a}\)

\(=\frac{2bc-abc}{3c-2bc+abc}-\frac{2b}{3-2b+ab}+\frac{2abc-3ac}{3ac-2abc+a^2bc}\)

\(=\frac{c\left(2b-ab\right)}{c\left(3-2b+ab\right)}-\frac{2b}{3-2b+ab}+\frac{ac\left(2b-3\right)}{ac\left(3-2b+ab\right)}\)

\(=\frac{2b-ab}{3-2b+ab}-\frac{2b}{3-2b+ab}+\frac{2b-3}{3-2b+ab}\)

\(=\frac{2b-ab-2b+2b-3}{3-2b+ab}=\frac{2b-ab-3}{-\left(2b-ab-3\right)}=-1\)

4 tháng 4 2020

Mẹo thì không có đâu bạn ạ! ^_^. Cơ bản là bạn phải hiểu vấn đề của bài thôi!

Bạn thử lên youtube học của THẦY QUANG thử xem 

Thầy này dạy dễ hiểu lắm 

a) (a + b + c)2 = [(a + b) + c]2 = (a + b)2 + 2(a + b)c + c2

                       = a2+ 2ab + b2 + 2ac + 2bc + c2

                       = a2 + b+ c2 + 2ab + 2bc + 2ac.

b) (a + b – c)2 = [(a + b) – c]2 = (a + b)2 - 2(a + b)c + c2

                       = a2 + 2ab + b2 - 2ac - 2bc + c2

                       = a2 + b2 + c2 + 2ab - 2bc - 2ac.

c) (a – b –c)2 = [(a – b) – c]2 = (a – b)– 2(a – b)c + c2

= a2 – 2ab + b2 – 2ac + 2bc + c2

= a2 + b2 + c2 – 2ab + 2bc – 2ac.

bài này phải không nếu đúng thì tích hộ mình

đọc câu hỏi ra mình giải cho