Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ\(AK\perp AM\left(K\in OC\right)\)
\(AH\perp DC\left(H\in DC\right)\)
Áp dụng hệ thức giữa cạnh và đường cao và tam giác vuông AKN , đường cao AH , ta có
\(\dfrac{1}{AK^2}+\dfrac{1}{AN^2}=\dfrac{1}{AH^2}\left(1\right)\)
Xét \(\Delta AMB\)và\(\Delta ADK\)có:
\(\left\{{}\begin{matrix}AD=AB\\\widehat{B}=\widehat{D}\\\widehat{DAK}=\widehat{MAB}\end{matrix}\right.\)
=> \(\Delta AMB=\Delta AKD\)
=> AM=AK ( 2 cạnh tương ứng)(2)
Áp dụng định lý py-ta-go , ta có :
\(HD^2+AH^2=AD^2\)
=>\(AH^2=AD^2-HD^2\)(3)
\(\Delta ADH\perp H\)có :\(\widehat{ADH}+\widehat{DAH}=90^o\)
=> \(\widehat{ADH}=90^o-60^o\)(Vì ABCD là h.thoi có góc DAB=120 độ => góc DAH=60 độ)
=>\(\widehat{ADH}=30^o\)
=>\(DH=\dfrac{1}{2}AD\)(4)
Thay (4) vào (3) , ta có : \(AH^2=AD^2-\left(\dfrac{1}{2}.AD\right)^2\)
=\(\dfrac{3}{4}.AD^2\)
=\(\dfrac{3}{4}.AB^2\)(vì AB=AD)
Thay (2) vào (5) , ta có :
\(\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{4}{3AB^2}\)
<=> \(\dfrac{3}{AM^2}+\dfrac{3}{AN^2}=\dfrac{4}{AB^2}\)
Xét tam giác AKD và tam giác ABE ta có:
\(\widehat{ADK}=\widehat{ABE}\left(=90^o\right)\)
\(\widehat{KAD}=\widehat{BAE}\) (cùng phụ \(\widehat{DAF}\)
=> \(\Delta AKD\sim\Delta AEB\left(g-g\right)\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AK}{AE}=\dfrac{1}{2}\)
\(\Rightarrow AK=\dfrac{1}{2}AE\)
Xét tam giác AKF vuông tại A có đcao AD :
\(\dfrac{1}{AD^2}=\dfrac{1}{AK^2}+\dfrac{1}{AF^2}\) (HTL)
\(\dfrac{1}{\dfrac{1}{4}AB^2}=\dfrac{1}{\dfrac{1}{4}AE^2}+\dfrac{1}{AF^2}\)
\(\dfrac{4}{AB^2}=\dfrac{4}{AE^2}+\dfrac{1}{AF^2}\)
\(\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{4AF^2}\)
4. Dễ thấy \(\Delta AML\approx\Delta LKC\left(g-g\right)\)
\(\Rightarrow\frac{AL}{LC}=\sqrt{\frac{S_{\Delta AML}}{S_{\Delta LKC}}}=\sqrt{\frac{42.7283}{51.4231}}\approx0.9115461896\)
\(\Rightarrow\frac{AL}{AC}=\frac{0.9115461896}{0.9115461896+1}=0.476863282\)
Lại có \(\Delta AML\approx\Delta ABC\left(g-g\right)\)
\(\Rightarrow\frac{S_{AML}}{S_{ABC}}=\left(\frac{AL}{AC}\right)^2=0.476863282^2=0.2273985897\)
\(\Rightarrow S_{\Delta ABC}=\frac{S_{\Delta AML}}{0.2273985897}=\frac{42.7283}{0.2273985897}\approx187.9\left(cm^2\right)\)
1. Ta có \(\frac{BH}{CH}=\frac{\sqrt{7}}{\sqrt{5}}\Rightarrow BH=\frac{\sqrt{7}}{\sqrt{5}}CH\)
Mặt khác \(BC=\sqrt{11}\Rightarrow BH+CH=11\)
\(\Rightarrow\frac{\sqrt{7}}{\sqrt{5}}CH+CH=11\)
\(\Leftrightarrow CH=\frac{-55+11\sqrt{35}}{2}\) và \(BH=\frac{77-11\sqrt{35}}{2}\)
Có BH, CH và BC tính đc AB, AC \(\left(AB=\sqrt{BH.BC};AC=\sqrt{CH.BC}\right)\)
Từ đó tính đc chu vi tam giác ABC.
2. Để cj gửi hình qua gmail cho
3. Chỉ còn cách làm từng bước thôi e
\(B=31+\frac{27}{\frac{30127}{2008}}=31+\frac{54216}{30127}=32+\frac{24089}{30127}\)
Để viết liên phân số, ta bấm phím tìm thương và số dư:
(Mỗi số b1, b2, b3, ..., bn-1 chính là thương; số chia của phép chia trước là số bị chia của phép chia sau, còn số dư của phép chia trước là số chia của phép chia sau, nhớ nhá)
- B1: Tìm thương và số dư của 30127 cho 24089, thương là 1, dư 6038, viết \(B=32+\frac{1}{1+...}\)
- B2: Tìm thương và số dư của 24089 cho 6038, thương là 3, dư 5975, viết \(B=32+\frac{1}{1+\frac{1}{3+...}}\)
- B3: Tìm thương và số dư của 6038 cho 5975, thương là 1, dư 63, viết \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+...}}}\)
- B4: Tìm thương và số dư của 5975 cho 63, thương là 94, dư 53, viết \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+...}}}}\)
...
Cứ làm như vậy, đến khi số dư là 1 thì dừng lại, phân số cuối cùng \(\frac{1}{b_n}\) thì bn chính là số chia cuối cùng, bn = 3
Kết quả: \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+\frac{1}{1+\frac{1}{5+\frac{1}{3+\frac{1}{3}}}}}}}}\)