Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10^{10}\) không chia hết cho 9; \(10^9\) không chia hết cho 3, bạn xem lại đề
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)
b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)
Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)
c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1
+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên
a) \(\overline{aaa}=100a+10a+a=111a\)
mà \(111=37.3⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)
b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)
\(\Rightarrow dpcm\)
a) 3 số đó có dạng: 2k + 2k + 2 + 2k + 3 = 6k + 6 = 6(k+1)
=> chia hết cho 6
b) 3 số đó có dạng: 2k + 1 + 2k + 3 + 2k + 5 = 6k + 9 = 6(K+1) + 3
=> không chia hết cho 6
c) 3 số đó có dạng: 2k + 2k + 2 + 2k + 4 + 2k + 6 + 2k + 8
= 10k + 20 = 10(k+2)
=> chia hết cho 10
5 số đó có dạng: 2k + 1 2k + 3 + 2k + 5 + 2k + 7 + 2k + 9 = 10k + 25 = 10(K+2) + 5
=> chia 10 dư 5
5 số chẵn liên tiếp có dạng 2q,2q+2,+q+4,2q+6,2q+8 (q thuộcN)
Xét tổng
2q+2q+2+2q+4+2q+6q2q+8=(2q+2q+2q+2q+2q)+(2+4+6+8)=10q+10=10*(q+1)
Vì q thuộc N =>10.(q+1) chia hết cho 10
Còn lại bạn tự làm nha yêu bạn
Tham khảo nhé:
a)
Để chia hết cho 2 thì và .
mà thì
còn thì luôn đúng.
Vậy để thì , hay và
b)
Để chia hết cho 5 thì và .
mà thì luôn đúng
còn thì .
Vậy để thì , hay và
c)
Để chia hết cho 10 thì và .
mà thì
còn thì .
Vậy để thì và ,
hay
Giải thích:
Số chia hết cho 2 là số chẵn có dạng
Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng
Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là
THAM KHẢO nhé:
a)
Để chia hết cho 2 thì và .
mà thì
còn thì luôn đúng.
Vậy để thì , hay và
b)
Để chia hết cho 5 thì và .
mà thì luôn đúng
còn thì .
Vậy để thì , hay và
c)
Để chia hết cho 10 thì và .
mà thì
còn thì .
Vậy để thì và ,
hay
Giải thích:
Số chia hết cho 2 là số chẵn có dạng
Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng
Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là
Cách chẵn lẻ :
Gọi 2 số tự nhiên liên tiếp là : n, n+ 1
Ta có : n.(n+1)
TH1: n chia hết 2 => n .(n + 1 ) chia hết 2
TH2: n ko chia hết 2 =>n = 2k + 1
=> n + 1 = 2k + 1 = 2k + 2 =2 (k + 1) chia hết 2
=>n. (n + 1) chia hết 2
Vậy 2 số tự nhiên liên tiếp chia hết 2.
a) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)
Nên \(10^{10}-1\) ⋮ 9
b) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)
Mà: \(1+0+0+...+2=3\) ⋮ 3
Nên: \(10^{10}+2\) ⋮ 3