\(M\left(x\right)=x^2-4x+3\) \(CMR:x=3\)là nghiệm của đa thức...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

Bài 1:
a) \(x^2+7x-8=x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{81}{4}\)

\(=\left(x+\frac{7}{2}\right)^2-\frac{81}{4}=0\)

\(\Rightarrow\left(x+\frac{7}{2}\right)^2=\frac{81}{4}\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{9}{2}\\x+\frac{7}{2}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)

Vậy nghiệm của đa thức m(x) là 1 hoặc -8

b) \(\left(x-3\right)\left(16-4x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\16-4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

Vậy nghiệm của đa thức g(x) là 3 hoặc 4

c) \(5x^2+9x+4=0\)

\(\Rightarrow x^2+\frac{9}{5}x+\frac{4}{5}=0\)

\(\Rightarrow x^2+2x.\frac{9}{10}+\frac{81}{100}-\frac{1}{100}=0\)

\(\Rightarrow\left(x+\frac{9}{10}\right)^2-\frac{1}{100}=0\)

\(\Rightarrow\left(x+\frac{9}{10}\right)^2=\frac{1}{100}\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{9}{10}=\frac{1}{10}\\x+\frac{9}{10}=\frac{-1}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=-1\end{cases}}\)

Vậy...

Bài 2: 

\(M\left(3\right)=3^2-4\cdot3+3=0\)

=>x=3 là nghiệm của M(x)

\(M\left(-1\right)=\left(-1\right)^2-4\cdot\left(-1\right)+3=1+3+4=8\)

=>x=-1 không là nghiệm của M(x)

24 tháng 6 2021

a, Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3-4x+7-5x^3-x^2+4x-5\)

\(=-x^2+2\)

\(N\left(x\right)=P\left(x\right)-Q\left(x\right)=5x^3-4x+7+5x^3+x^2-4x+5\)

\(=10x^3+x^2-8x+12\)

b, Đặt \(M\left(x\right)+2=0\Rightarrow-x^2+2+2=0\Leftrightarrow4-x^2=0\)

\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

Vậy tập nghiệm đa thức trên là S = { -2 ; 2 } 

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

29 tháng 3 2021

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

30 tháng 3 2021

đồng nhất hệ số mình chưa học nha

19 tháng 4 2017

a) Ta có: P(110110) = 5x + 1212 = 5 . 110110 + 1212 = 1212 + 1212 = 1 ≠ 0

Vậy x = 110110 không là nghiệm của P(x).

b) Ta có: Q(1) = 12 - 4.1 + 3 = 1 - 4 + 3 = 0 => x = 1 là nghiệm của Q(x)

Q(3) = 32 - 4.3 + 3 = 9 - 12 + 3 = 0

Vậy x = 1; x = 3 là nghiệm của Q(x).

23 tháng 4 2017

a) Ta có: P(110110) = 5x + 1212 = 5 . 110110 + 1212 = 1212 + 1212 = 1 ≠ 0

Vậy x = 110110 không là nghiệm của P(x).

b) Ta có: Q(1) = 12 - 4.1 + 3 = 1 - 4 + 3 = 0 => x = 1 là nghiệm của Q(x)

Q(3) = 32 - 4.3 + 3 = 9 - 12 + 3 = 0

Vậy x = 1; x = 3 là nghiệm của Q(x).



31 tháng 3 2020

Ta có: M(x)=x4+2x2+1

1. Thay x=1 vào M(x) ta được: M(1)=1+2.1+1=4

Thay x=-1 vào M(x) ta được: M(-1)=(-1)2+2.(-1)2+1=4

2. Đặt t=x2 (t\(\ge\)0)

Ta được: M(t)=t2+2t+1=(t+1)2=0

\(\Leftrightarrow t=-1\) (KTM)

\(\Rightarrow\) M(x) vô nghiệm (dpcm)

Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha

19 tháng 4 2017

a) Thu gọn và sắp xếp:

M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1

= x4 + 2x2 +1

b)M(1) = 14 + 2.12 + 1 = 4

M(–1) = (–1)4 + 2(–1)2 + 1 = 4

Ta có M(x)=\(x^4+2x^2+1\)

\(x^4\)\(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x

Nên \(x^4+2x^2+1>0\)

Tức là M(x)\(\ne0\) với mọi x

Vậy đa thức trên không có nghiệm.

19 tháng 4 2017

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

M(x)=2x4x4+5x3x34x3+3x2x2+1M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1

=x4+2x2+1=x4+2x2+1

b) M(1)=14+2.12+1=4M(1)=14+2.12+1=4

M(1)=(1)4+2.(1)2+1=4M(−1)=(−1)4+2.(−1)2+1=4

c) Ta có: M(x)=x4+2x2+1M(x)=x4+2x2+1

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.

1 tháng 5 2019

a)p(x)=1^2+m*1-9

=1+m*(-8)

m=-7

đây là cách của trường mình nếu có sai mong bạn thông cảm

còn câu b,c bạn có thể tự thay

2 tháng 5 2019

Tham số là của lớp 8 hay 9 gì mà ta?