\(\left(x-3\right)^3-\left(x+1\right)^3+12x\left(x-1\right)\)

a) Rú gọn M

b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2016

a) M= (x - 3)3 - (x + 1)3 + 12x (x -1)

= x3 -  9x2 + 27x - 27 - x3  - 3x2 - 3x - 1 + 12x- 12x

= 12x - 28

b) Thay x= \(-\frac{2}{3}\) vào đa thức 12x - 28

=> 12 . (\(-\frac{2}{3}\)) - 28

= -36

c) 12x - 28 = -16

 12x = 12

x = 1

26 tháng 11 2017

a)  M = ( 2x + 3)(2x - 3) - 2(x + 5)2 - 2(x - 1)(x + 2) 

   = 4x2 - 9 - 2(x2 + 10x + 25) - 2(x2 + x - 2)

   = 4x2 - 9 - 2x2 - 20x - 50 - 2x2 - 2x + 4

   = -22x - 55 =  -11(2x + 5)

b) M = -11(2x + 5) = - 11(2.\(\frac{-7}{3}\)+ 5) = \(\frac{-11}{3}\)

b)  M = -11(2x + 5) = 0

\(\Rightarrow\)2x + 5 = 0

\(\Rightarrow\)x = \(\frac{-5}{2}\)

26 tháng 11 2017

Ta có: M = (2x+3)(2x-3) - 2(x+5)2 - 2(x-1)(x+2) \(=\left(2x\right)^2-3^2-2\left(x^2+10x+25\right)-\) \(2\left(x^2+x-2\right)\)

\(=4x^2-9-2x^2-20x-50-2x^2-2x+4\) =\(\left(4x^2-2x^2-2x^2\right)-\left(20x+2x\right)-\left(50+9-4\right)\) \(=-22x-55\)

b, Với x = \(-2\frac{1}{3}=\frac{-7}{3}\)

\(\Rightarrow M=-22.\frac{-7}{3}-55=\frac{154}{3}-55=\frac{-11}{3}\)

c, Để M = 0 => -22x - 55 = 0 \(\Rightarrow-22x=55\Rightarrow x=\frac{-55}{22}=\frac{-5}{2}\)

Vậy \(x=\frac{-5}{2}\) 

30 tháng 12 2019

\(e ) Để \)  \(M\)\(\in\)\(Z \)  \(thì\) \(1 \)\(⋮\)\(x +3\)

\(\Leftrightarrow\)\(x + 3 \)\(\in\)\(Ư\)\((1)\)\(= \) { \(\pm\)\(1 \) }

\(Lập\)  \(bảng :\)

\(x +3\)\(1\)\(- 1\)
\(x\)\(-2\)\(- 4\)

\(Vậy : Để \)  \(M\)\(\in\)\(Z\)  \(thì\) \(x\)\(\in\)\(- 4 ; - 2\) }

30 tháng 12 2019

e) Để M \(\in\)Z <=> \(\frac{1}{x+3}\in Z\)

<=> 1 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(1) = {1; -1}

Lập bảng: 

x + 31-1
  x-2-4

Vậy ....

f) Ta có: M > 0

=> \(\frac{1}{x+3}\) > 0

Do 1 > 0 => x + 3 > 0

=> x > -3

Vậy để M > 0 khi x > -3 ; x \(\ne\)3 và x \(\ne\)-3/2

21 tháng 7 2017

1)

a) \(x^2+12x+36=\left(x+6\right)^2\)

b) \(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)

Tick nha

21 tháng 7 2017

3)

a)\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow-2x=15-8\)

\(\Leftrightarrow-2x=7\)

\(\Rightarrow x=\dfrac{-7}{2}\)

b) \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2\right)-5x+1=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3-10x^2+2x+4x^2-5x+1=28\)

\(\Leftrightarrow0-3x^2+23x+28=28\)

\(\Leftrightarrow-3x^2+23x=0\)

\(\Leftrightarrow-x\left(3x-23\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\3x-23=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{23}{3}\end{matrix}\right.\)

c) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x^6-3x^4+3x^2-1-x^6-2x^4-2x^2-1=0\)

\(\Leftrightarrow-5x^4+x^2-2=0\)

Đặt \(-5t^2+t-2=0\)

\(\Delta=1^2-4\left(-5\right)\left(-2\right)=-39< 0\)

\(\Rightarrow PTVN\)