\(M=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}+\dfrac{x-2}{2+x}\right):\dfrac{x^3-3x^2}{2x^3-x^4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(M=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right):\dfrac{x^2\left(x-3\right)}{x^3\left(2-x\right)}\)

\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)

\(=\dfrac{-4x^2-8x}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2+8x}{x+2}\cdot\dfrac{x}{x-3}\)

\(=\dfrac{4x^2}{x-3}\)

b: Để M là số nguyên thì \(4x^2⋮x-3\)

\(\Leftrightarrow4x^2-36+36⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)

hay \(x\in\left\{4;5;1;0;7;-1;9;-3;12;-6;15;-9;21;-12;39;-33\right\}\)

2 tháng 5 2018

khocroikhocroikhocroihiha

2 tháng 5 2018

Câu 1 :

a) Rút gọn P :

\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)

\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)

\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)

a: \(P=\left[\left(x-2\right)\left(x^2+2x+4\right)\cdot\dfrac{x+2}{x^2+2x+4}-\dfrac{\left(x-2\right)\left(x+2\right)}{x^2+2x+4}\cdot\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{x+2}\right]:\left(x-1\right)\)

\(=\dfrac{\left[x^2-4-\left(x-2\right)^2\right]}{x-1}\)

\(=\dfrac{x^2-4-x^2+4x-4}{x-1}=\dfrac{4x}{x-1}\)

b: Để P là số nguyên thì \(4x-4+4⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{0;3;-1;5;-3\right\}\)

a: \(A=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{\left(x-2\right)}+\dfrac{1}{x+2}\right):\dfrac{x^2-4+10-x^2}{x+2}\)

\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)

\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{6}=\dfrac{-1}{x-2}\)

b: |x|=1/2 khi x=1/2 hoặc x=-1/2

Khi x=1/2 thì \(A=\dfrac{-1}{\dfrac{1}{2}-2}=-1:\dfrac{-3}{2}=\dfrac{2}{3}\)

Khi x=-1/2 thì \(A=\dfrac{-1}{-\dfrac{1}{2}-2}=-1:\dfrac{-5}{2}=\dfrac{2}{5}\)

c: Để A=2 thì x-2=-1/2

hay x=3/2

d:Để A<0 thì x-2>0

hay x>2

18 tháng 8 2017

\(=\left[\dfrac{2x-3}{\left(2x-5\right)\left(2x-1\right)}-\dfrac{3}{2x-1}-\dfrac{2\left(x-4\right)}{\left(x-4\right)\left(2x-5\right)}\right].\dfrac{2x\left(2x+3\right)-\left(2x+3\right)}{-2x\left(4x-7\right)-3\left(4x-7\right)}+1\)

\(=\left[\dfrac{2x-3-6x+15-4x+2}{\left(2x-5\right)}\right].\dfrac{2\left(x+\dfrac{3}{2}\right)}{\left(-2x-3\right)\left(4x-7\right)}+1\)

\(=\dfrac{-2\left(4x-7\right)}{2x-5}.\dfrac{2\left(x+\dfrac{3}{2}\right)}{\left(-2x-3\right)\left(4x-7\right)}+1\)

\(=\dfrac{1}{2x-5}.2+1\)

\(=\dfrac{2+2x-5}{2x-5}\)

\(=\dfrac{-3+2x}{2x-5}\)

3 tháng 3 2017

\(\left(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\right):\dfrac{4x-2}{x+1}-\dfrac{1-x^2+3x}{3x}=\dfrac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}.\dfrac{x+1}{4x-2}-\dfrac{1-x^2+3x}{3x}=\dfrac{-8x^2+2}{3x\left(4x-2\right)}-\dfrac{1-x^2+3x}{3x}=\dfrac{-2x-1-1+x^2-3x}{3x}=\dfrac{x^2-5x-2}{3x}\)

3 tháng 3 2017

a/ rút gọn ra là M= \(\dfrac{x^2-5x-2}{3x}\)

b/ thay x=123 thì M=\(\dfrac{14512}{369}\)

a: \(A=\dfrac{2x-5+x^2-4+x^2-9}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2+2x-18}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{2\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x+6}{x-3}\)

b: Để A/2=x+3/x-3 là số nguyên thì \(x-3+6⋮x-3\)

=>\(x-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(x\in\left\{4;51;6;0;9;-3\right\}\)

c: Để A=1/x-1 thì \(\dfrac{2x+6}{x-3}=\dfrac{1}{x-1}\)

=>2x^2-2x+6x-6=x-3

=>2x^2+5x-6-x+3=0

=>2x^2+4x-3=0

hay \(x=\dfrac{-2\pm\sqrt{10}}{2}\)

9 tháng 8 2017

a. A=(3x-2)(3x+2)/(2x-1)(2x+1)+(2x+1)(x-1)=(3x-2)(3x+2)/(2x+1)(3x-2)=3x+2/2x+1

b. A>0

=>3x+2 lớn hơn hoặc bằng 2x+1

=>x lớn hơn hoặc bằng -1

c. Để A thuộc z thì 3x+2 chia hết cho 2x+1

=>x = -1/2

      = 1+ x+1/2x+1 = 1+ 2x+1-x/2x+1=1+ 2x+1/2x+1 -x/2x+1

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)