Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Ta có : \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
=> \(S=3\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)\)
Ta có : \(\frac{1}{10}>\frac{1}{15};\frac{1}{11}>\frac{1}{15};\frac{1}{12}>\frac{1}{15};\frac{1}{13}>\frac{1}{15};\frac{1}{14}>\frac{1}{15}\)
=> \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}>\frac{1}{15}+\frac{1}{15}+...+\frac{1}{15}=\frac{5}{15}=\frac{1}{3}\)
=> \(S=3\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)>3.\frac{1}{3}=1\)
=> S >1 (1)
** Ta có : \(\frac{1}{11}<\frac{1}{10};\frac{1}{12}<\frac{1}{10};\frac{1}{13}<\frac{1}{10};\frac{1}{14}<\frac{1}{10}\)
=> \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}<\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{5}{10}=\frac{1}{2}\)
=> \(S=3\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)<3.\frac{1}{2}=\frac{3}{2}<\frac{4}{2}=2\)
=> S < 2 (2)
Từ (1) và (2) => 1 < S < 2 (đpcm)
Vì \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}<\frac{3}{10};\frac{3}{12}<\frac{3}{10};\frac{3}{13}<\frac{3}{10};\frac{3}{14}<\frac{3}{10}\)
\(\Rightarrow S<\frac{3}{10}.5\Rightarrow S<\frac{15}{10}\Rightarrow S<\frac{20}{10}\Rightarrow S<2\left(1\right)\)
Vì \(\frac{3}{10}>\frac{3}{14};\frac{3}{11}>\frac{3}{14};\frac{3}{12}>\frac{3}{14};\frac{3}{13}>\frac{3}{14};\frac{3}{14}=\frac{3}{14}\)
\(\Rightarrow S>\frac{3}{14}.5\Rightarrow S>\frac{15}{14}\Rightarrow S>1\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow1
a
A=1+3+3²+...+3^30
3A=3(1+3+3²+...+3^30)
3A=3+3²+3^3+...+3^31
3A-A=3^31-1
=>A=3^31-1
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
a, \(\frac{3}{8}+\frac{11}{13}-\frac{9}{13}\)
=\(\frac{3}{8}+\frac{2}{13}\)
=\(\frac{55}{104}.\)
b, \(\frac{2}{7}.\left(\frac{5}{9}+\frac{4}{9}\right)+\frac{2}{7}\)
=\(\frac{2}{7}.\frac{9}{9}+\frac{2}{7}\)
=\(\frac{2}{7}+\frac{2}{7}\)
=\(\frac{4}{7}\)
c, \(\frac{3}{11}.\left(\frac{3}{5}-\frac{5}{3}\right)-\frac{3}{10}.\left(\frac{1}{3}-\frac{2}{5}\right)\)
=\(\frac{3}{11}.-\frac{16}{15}-\frac{3}{10}.-\frac{1}{15}\)
=\(-\frac{16}{55}--\frac{1}{50}\)
=\(-\frac{149}{550}.\)
d, \(\frac{-3}{4}.\frac{11}{23}+\frac{3}{23}.\frac{31}{17}-\frac{3}{17}.\frac{19}{23}\)
=\(-\frac{33}{92}+\frac{93}{391}-\frac{57}{391}\)
=\(-\frac{417}{1564}\)
e, \(\frac{3}{17}.\frac{11}{23}+\frac{3}{23}.\frac{31}{17}-\frac{3}{17}.\frac{19}{23}\)
=\(\frac{33}{391}+\frac{93}{391}--\frac{254}{391}\)
=\(\frac{380}{391}.\)
g, \(\frac{3}{7}.\frac{-5}{12}+\frac{11}{17}:\frac{5}{-12}\)
=\(-\frac{5}{28}+-\frac{132}{85}\)
= \(-1.731512605.\)
k cho mình nha làm mỏi tay quá ,.....................kết bạn với mình nha.......................
Mk cần trước 23 h nha. Ai nhanh mk cho 3 k
Trên máy mk hiển thị , câu hỏi này 4 phút nữa mới chính thức xuất hiện ,,, máy bị j hay do câu hỏi ak ??