Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
\(=\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\cdot\frac{8}{33}\)
\(=\frac{52}{33}\)
a) Đặt A= 13/15 + 13/35 + 13/63 + 13/99
A = 13/2 ( 2/15 + 2/35 + 2/63 + 2/99)
A= 13/2 ( 2/ 3.5 + 2/5.7 + 2/7.9 + 2/9.11)
A= 13/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)
A= 13/2 ( 1/3 - 1/11)
A= 13/2 . 8/33
A= 52/33
2, \(\frac{10}{1.2.3}+\frac{10}{2.3.4}+\frac{10}{3.4.5}+....+\frac{10}{100.101.102}\)
\(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{102-100}{100.101.102}\)
\(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{100.101}-\frac{1}{101.102}\right)\)
\(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{101.102}\right)\)
\(=\frac{10}{2}.\frac{2575}{5151}\)
\(=2,499514657\)
B=2/1.3 + 2/3.5 + 2/5.7 +...+ 2/299.301
B=1-1/3+1/3-1/5+1/5-1/7+...+1/299-1/301=1-1/301=300/301
\(Ta có: \frac{2}{3}=\frac{1}{1}-\frac{1}{3}\);
\(\frac{2}{15}=\frac{1}{3}-\frac{1}{5}\);
\(\frac{2}{35}=\frac{1}{5}-\frac{1}{7}\) ; ... ; \(\frac{2}{89999}=\frac{1}{299}-\frac{1}{301}\).
=> B= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{299}-\frac{1}{301}\)
=> B=\(\frac{1}{1}-\frac{1}{301}\)
=> B=\(\frac{300}{301}\)
Đặt A = \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+.....+\frac{3}{99.100}\)
\(\frac{1}{3}A\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{3}A\)\(=1-\frac{1}{100}\)
=> \(\frac{1}{3}A=\frac{99}{100}\)
=> A = \(\frac{99}{100}.3=\frac{297}{100}\)
\(\frac{3}{1.2}+\frac{3}{2.3}+..................+\frac{3}{99.100}\)
\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+..................+\frac{1}{99.100}\right)\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.................+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}\)
\(=\frac{297}{100}\)
mình không biết nữa bằng bao nhiêu ấy nhỉ .......? .......? Sory ^.^
1/3 + 13/15 + 33/35 + 61/63 + 97/99
= 45/11 ( mình không tiện giải, để khi khác giải sau)
Chúc bạn may mắn!
Ta có: A= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)
=1/3-1/5+1/5-1/7+1/7-1/9+...+1/99-1/101
=1/3-1/101
=98/303
\(\frac{2}{3\times5}\times a+\frac{2}{5\times7}\times a+...+\frac{2}{13\times15}\times a=\frac{28}{15}\)
=> \(\left(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{13\times15}\right)\times x=\frac{28}{15}\)
=> \(\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\times x=\frac{28}{15}\)
=> \(\left(\frac{1}{3}-\frac{1}{15}\right)\times x=\frac{28}{15}\)
=> \(\frac{4}{15}\times x=\frac{28}{15}\)
=> \(x=\frac{28}{15}:\frac{4}{15}\)
-> \(x=7\)
\(\frac{2}{3\times5}\times a+\frac{2}{5\times7}\times a+...+\frac{2}{13\times15}\times a=\frac{28}{15}\)
\(a\times\left(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{13\times15}\right)=\frac{28}{15}\)
\(a\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{28}{15}\)
\(a\times\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{28}{15}\)
\(a\times\frac{4}{15}=\frac{28}{15}\)
\(a=\frac{28}{15}:\frac{4}{15}\)
\(a=\frac{28}{15}\times\frac{25}{4}\)
\(a=\frac{28}{4}=7\)
B1 Nhân biểu tthức trên với 1/2 được
1/6+1/12/+1/20+....+1/110=1/2×3+1/3×4+.....+1/10×11
=1/2-1/3+1/3-1/4+.....+1/10-1/11=1/2-1/11=9/22
B2
B.1/1×2+1/2×3+.....+1/99×100=1-1/2 +1/2-1/3+....+1/99-1/100=1-1/100=99/100
Phần a sai đề phải llà1/2×4+1/4×6+.....+1/8×10 mới làm đc nhé
<=> (a+15)(1/1.2 +...+1/99.100)=297/10
<=>(a+15)(1/1-1/2+...=1/99-1/100)=297/100
<=> (a+15)99/100=297/100
<=>a+15=3
<=>a=-12
Tách a+15 ra ngoài thanh một thừa số
còn lại tự giải nốt
kết quả ra 15