Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải trên phép trên =>X=3-1=2
ta có [y-2]+1=1
=>y=2 đáp số:y=2 , x=2
a. ta có 2y+3 là số lẻ nên
\(\left|2y+3\right|\in\left\{1,3\right\}\)
\(TH1:\left|2y+3\right|=1\Rightarrow\hept{\begin{cases}\left|2y+3\right|=1\\\left|x+5\right|=14\end{cases}}\) vậy (x,y) = (-19,-2) , (-19,-1) (9,-2) , (9,-1)
TH2: \(\left|2y+3\right|=3\Rightarrow\hept{\begin{cases}\left|2y+3\right|=3\\\left|x+5\right|=6\end{cases}}\)Vậy (x,y) =( -11,-1) , (-11,0) , (1,-1), (1,0)
b. ta có \(\left(2x\right)^2+\left|y+3\right|=9\)
\(TH1:\left|2x\right|=2\Rightarrow\hept{\begin{cases}\left|2x\right|=2\\\left|y+3\right|=5\end{cases}}\) vậy (x,y) = (-1,-8) ,(-1,2) ,(1,-8), (1,2)
\(TH2:\left|2x\right|=0\Leftrightarrow\hept{\begin{cases}\left|2x\right|=0\\\left|y+3\right|=9\end{cases}}\)vậy (x,y=(0,-12) , (0.6)
kẻ đoạn BK song song zới Ax là đc :)(=> nó cũng song song xới Cy)
Từ đó => \(_{\widehat{xAB}+\widehat{ABK}=180}\)\(=>\widehat{ABK}=180-115=65\)
mà \(ABK+KBC=ABC=90=>KBC=25\)
mà BK song song zới CY
=> \(KBC+BCy=180=>BCy=180-25=155\)
Kẻ đường thẳng Bz // Ax
Mà Ax // Cy
=> Bz // Cy
Ta có Bz // Ax
=> góc BAx + ABz = 180o ( hai góc trong cùng phía )
=> góc ABz = 180o - góc BAx = 65o
Ta lại có Bz // Cy ( chứng minh trên )
=> ABz + BCy = 180o ( hai góc trong cùng phía )
=> BCy = 180o - góc ABz = 180o - 65o = 115o
Tự kẻ hình nha mình ngại kẻ lắm
\(B=\left|x+1\right|+\left|x-4\right|+\left|2x-5\right|\ge\left|2x-3\right|+\left|2x-5\right|=\left|2x-3\right|+\left|5-2x\right|\)
\(\ge\left|2x-3+5-2x\right|=\left|2\right|=2\)
Dấu ''='' xảy ra khi \(\left(x+1\right)\left(4-x\right)\ge0;\left(2x-3\right)\left(5-2x\right)\ge0\)
\(-1\le x\le4;\frac{3}{2}\le x\le\frac{5}{2}\Rightarrow-1\le x\le4\)
Vậy GTNN của B bằng 2 tại -1 =< x =< 4
Mình hướng dẫn cách làm thôi nhé !
Kéo dài Cy theo đầu C cắt AB tại D. Có góc BCY + góc BCD = 1800 ( kề bù )
Mà góc BCy = 1300 => góc BCD = 1800 - 1300 = 500
Xét tam giác BCD có góc B + góc BCD + góc BDC = 1800 ( tổng 3 góc trong tam giác )
=> góc BDC = 1800 - góc B - góc BCD = 580 ( Bạn tự tính ra nhé )
Từ đó ta thấy góc A = góc BDC = 580. Mà 2 góc này ở vị trí đồng vị nên Ax // Cy ( Do D thuộc Cy )
Trên nửa mặt phẳng bờ AB chứa C, kẻ \(BD//Ax\), Ta có:
\(\widehat{xAB}=\widehat{ABD}=100^o\)(2 góc so le trong)
Do tia \(BC\)nằm giữa 2 tia \(BA\)và \(BD\)
\(\Rightarrow\widehat{ABC}+\widehat{CBD}=\widehat{ABD}\)
Thay số: \(40^o+\widehat{CBD}=100^o\)
\(\Rightarrow\widehat{CBD}=100^o-40^o=60^o\)
+) Do\(\hept{\begin{cases}BD//Ax\\Ax//Cy\left(gt\right)\end{cases}}\)
\(\Rightarrow BD//Cy\)(Tính chất bắc cầu)
\(\Rightarrow\widehat{yCB}+\widehat{CBD}=180^o\)
Thay số: \(\Rightarrow\widehat{yCB}+60^o=180^o\)
\(\Rightarrow\widehat{yCB}=180^o-60^o=120^o\)
Vậy, \(\widehat{BCy}=120^o\)
từ B kẻ Bz // Ax và Cy
ta có xAB tcp ABz => xAB + ABz = 180 => ^ABz = 30
có ABz + zBC = 80 => zBC = 50
có zBC = BCy (so le trong) => BCy = 50
Kẻ tia \(Bz//Ax\Rightarrow Bz//Cy\).
Vì \(Bz//Ax\)nên \(\widehat{BAx}+\widehat{ABz}=180^o\)(hai góc trong cùng phía)
\(\Leftrightarrow\widehat{ABz}=180^o-\widehat{BAx}=180^o-110^o=70^o\)
Tương tự xét \(Bz//Cy\)cũng suy ra được \(\widehat{BCz}=180^o-\widehat{BCy}=180^o-120^o=60^o\)
\(\widehat{ABC}=\widehat{ABz}+\widehat{CBz}=70^o+60^o=130^o\)
ta có \(\left(x-1\right)\left(3-x\right)\le\left(\frac{x-1+3-x}{2}\right)^2=1\le\left|y-2\right|+1\)
Dấu bằng xart ra khi:
\(\hept{\begin{cases}x-1=3-x\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}\)Vậy phương trình có nghiệm duy nhất (2,2)
x=3-1
y=0+2